My Algorithm Summary
  • Introduction
  • Data Structure
    • Linked List
    • Stack
      • Monotone Stack
        • 42 Trapping Rain Water
        • 84 Largest Rectangle in Histogram
        • 85 Maximal Rectangle
        • 255 Verify Preorder Sequence in Binary Search Tree
        • 316 Remove Duplicate Characters
        • 402 Remove K Digits
        • 456 132 Pattern
        • 496 Next Greater Element I
        • 503 Next Greater Element II
      • 20 Valid Parentheses
      • 71 Simplify Path
      • 150 Evaluate Reverse Polish Notation
      • 155 Min Stack
      • 173 Binary Search Tree Iterator
      • 224 Basic Calculator
      • 227 Basic Calculator II
      • 232 Implement Queue using Stacks
      • 341 Flatten Nested List Iterator
      • 394 Decode String
      • 439 Ternary Expression Parser
      • 636 Exclusive Time of Functions
    • Heap
    • Trie
    • Segment Tree
    • Tree
      • 94 Binary Tree Inorder Traversal
      • 104 Maximum Depth of Binary Tree
      • 144 Binary Tree Preorder Traversal
      • 145 Binary Tree Postorder Traversal
      • 199 Binary Tree Right Side View
      • 226 Invert Binary Tree
      • 272 Closest Binary Search Tree Value II
      • 508 Most Frequent Subtree Sum
      • 513 Find Bottom Left Tree Value
      • 515 Find Largest Value in Each Tree Row
      • 617 Merge Two Binary Trees
      • 637 Average of Levels in Binary Tree
      • 653 Two Sum IV - Input is a BST
      • 654 Maximum Binary Tree
      • 669 Trim a Binary Search Tree
      • 666 Path Sum IV
      • 230 Kth Smallest Element in a BST
      • 250 Count Univalue Subtrees
      • 538 Convert BST to Greater Tree
      • 404 Sum of Left Leaves
      • 582 Kill Process
      • 112 Path Sum
      • 108 Convert Sorted Array to Binary Search Tree
      • 111 Minimum Depth of Binary Tree
      • 501 Find Mode in Binary Search Tree
      • 102 Binary Tree Level Order Traversal
      • 107 Binary Tree Level Order Traversal II
      • 103 Binary Tree Zigzag Level Order Traversal
      • 113 Path Sum II
      • 437 Path Sum III
      • 99 Recover Binary Search Tree
      • 687 Longest Univalue Path
      • 285 Inorder Successor in BST
      • 101 Symmetric Tree
      • 129 Sum Root to Leaf Numbers
      • 298 Binary Tree Longest Consecutive Sequence
      • 270 Closest Binary Search Tree Value
      • 549 Binary Tree Longest Consecutive Sequence II
      • 98 Validate Binary Search Tree
      • 652 Find Duplicate Subtrees
      • 314 Binary Tree Vertical Order Traversal
      • 333 Largest BST Subtree
      • 563 Binary Tree Tilt
      • 110 Balanced Binary Tree
    • Graph
      • Detect Cycle
  • Algorithms
    • Union Find
      • 695 Max Area of Island
      • 684 Redundant Connection
    • Binary Search
    • Topological Sorting
    • Breadth-First Search
      • 694 Number of Distinct Islands
    • Depth-First Search
    • Two Pointers
    • Sorting
    • Backtacking
    • Dynamic Programming
      • Interval DP
        • Matrix Chain Multiplication
        • Merge Stone
      • KnapSack Problem
        • 0-1 KnapSack
        • Unbounded KnapSack
      • Longest Increasing Subsequence
      • Longest Common Subsequence
    • Reservior Sampling
    • Bipartite Graph
      • Check Bipartite Graph
      • Maximal Matching - Hungarian Algorithm
    • String Pattern Matching
      • KMP Algorithm
      • Rabin Karp Algorithm
  • System Design
    • Consistent Hashing
    • Bloom Filter
    • Caching
      • LRU
      • LFU
    • Mini Twitter
    • Tiny Url
Powered by GitBook
On this page
  • 439. Ternary Expression Parser
  • 1. Question
  • 2. Implementation
  • 3. Time & Space Complexity

Was this helpful?

  1. Data Structure
  2. Stack

439 Ternary Expression Parser

439. Ternary Expression Parser

1. Question

Given a string representing arbitrarily nested ternary expressions, calculate the result of the expression. You can always assume that the given expression is valid and only consists of digits0-9,?,:,TandF(TandFrepresent True and False respectively).

Note:

  1. The length of the given string is ≤ 10000.

  2. Each number will contain only one digit.

  3. The conditional expressions group right-to-left (as usual in most languages).

  4. The condition will always be eitherTorF. That is, the condition will never be a digit.

  5. The result of the expression will always evaluate to either a digit0-9,TorF.

Example 1:

Input:"T?2:3"

Output:"2"

Explanation:If true, then result is 2; otherwise result is 3.

Example 2:

Input:"F?1:T?4:5"

Output:"4"


Explanation: The conditional expressions group right-to-left. Using parenthesis, it is read/evaluated as:

             "(F ? 1 : (T ? 4 : 5))"                   "(F ? 1 : (T ? 4 : 5))"
           ->"(F ? 1 : 4)"                 or       -> "(T ? 4 : 5)"
           ->"4"                                    -> "4"

Example 3:

Input:"T?T?F:5:3"


Output:"F"


Explanation: The conditional expressions group right-to-left. Using parenthesis, it is read/evaluated as:

             "(T ? (T ? F : 5) : 3)"                   "(T ? (T ? F : 5) : 3)"
          -> "(T ? F : 3)"                 or       -> "(T ? F : 5)"
          -> "F"                                    -> "F"

2. Implementation

思路:这是当年面Pocket Gem的电面题,当时的我完全懵逼无从入手...这道题既可以用递归,也可以用stack解。如果用stack的话,需要从后往前扫,这样的好处是当我们遇到'?'前面的character(T 或者 F),我们可以知道该保留‘?’后面的哪个expression

class Solution {
    public String parseTernary(String expression) {
        if (expression == null || expression.length() == 0) {
            return "";
        }

        Stack<Character> stack = new Stack<>();

        for (int i = expression.length() - 1; i >= 0; i--) {
            char c = expression.charAt(i);

            if (!stack.isEmpty() && stack.peek() == '?') {
                stack.pop();

                char firstVal = stack.pop();
                stack.pop();
                char secondVal = stack.pop();

                if (c == 'T') {
                    stack.push(firstVal);
                }
                else {
                    stack.push(secondVal);
                }
            }
            else {
                stack.push(c);
            }
        }
        return String.valueOf(stack.pop());
    }
}

3. Time & Space Complexity

时间和空间复杂度都是O(n)

Previous394 Decode StringNext636 Exclusive Time of Functions

Last updated 5 years ago

Was this helpful?