My Algorithm Summary
  • Introduction
  • Data Structure
    • Linked List
    • Stack
      • Monotone Stack
        • 42 Trapping Rain Water
        • 84 Largest Rectangle in Histogram
        • 85 Maximal Rectangle
        • 255 Verify Preorder Sequence in Binary Search Tree
        • 316 Remove Duplicate Characters
        • 402 Remove K Digits
        • 456 132 Pattern
        • 496 Next Greater Element I
        • 503 Next Greater Element II
      • 20 Valid Parentheses
      • 71 Simplify Path
      • 150 Evaluate Reverse Polish Notation
      • 155 Min Stack
      • 173 Binary Search Tree Iterator
      • 224 Basic Calculator
      • 227 Basic Calculator II
      • 232 Implement Queue using Stacks
      • 341 Flatten Nested List Iterator
      • 394 Decode String
      • 439 Ternary Expression Parser
      • 636 Exclusive Time of Functions
    • Heap
    • Trie
    • Segment Tree
    • Tree
      • 94 Binary Tree Inorder Traversal
      • 104 Maximum Depth of Binary Tree
      • 144 Binary Tree Preorder Traversal
      • 145 Binary Tree Postorder Traversal
      • 199 Binary Tree Right Side View
      • 226 Invert Binary Tree
      • 272 Closest Binary Search Tree Value II
      • 508 Most Frequent Subtree Sum
      • 513 Find Bottom Left Tree Value
      • 515 Find Largest Value in Each Tree Row
      • 617 Merge Two Binary Trees
      • 637 Average of Levels in Binary Tree
      • 653 Two Sum IV - Input is a BST
      • 654 Maximum Binary Tree
      • 669 Trim a Binary Search Tree
      • 666 Path Sum IV
      • 230 Kth Smallest Element in a BST
      • 250 Count Univalue Subtrees
      • 538 Convert BST to Greater Tree
      • 404 Sum of Left Leaves
      • 582 Kill Process
      • 112 Path Sum
      • 108 Convert Sorted Array to Binary Search Tree
      • 111 Minimum Depth of Binary Tree
      • 501 Find Mode in Binary Search Tree
      • 102 Binary Tree Level Order Traversal
      • 107 Binary Tree Level Order Traversal II
      • 103 Binary Tree Zigzag Level Order Traversal
      • 113 Path Sum II
      • 437 Path Sum III
      • 99 Recover Binary Search Tree
      • 687 Longest Univalue Path
      • 285 Inorder Successor in BST
      • 101 Symmetric Tree
      • 129 Sum Root to Leaf Numbers
      • 298 Binary Tree Longest Consecutive Sequence
      • 270 Closest Binary Search Tree Value
      • 549 Binary Tree Longest Consecutive Sequence II
      • 98 Validate Binary Search Tree
      • 652 Find Duplicate Subtrees
      • 314 Binary Tree Vertical Order Traversal
      • 333 Largest BST Subtree
      • 563 Binary Tree Tilt
      • 110 Balanced Binary Tree
    • Graph
      • Detect Cycle
  • Algorithms
    • Union Find
      • 695 Max Area of Island
      • 684 Redundant Connection
    • Binary Search
    • Topological Sorting
    • Breadth-First Search
      • 694 Number of Distinct Islands
    • Depth-First Search
    • Two Pointers
    • Sorting
    • Backtacking
    • Dynamic Programming
      • Interval DP
        • Matrix Chain Multiplication
        • Merge Stone
      • KnapSack Problem
        • 0-1 KnapSack
        • Unbounded KnapSack
      • Longest Increasing Subsequence
      • Longest Common Subsequence
    • Reservior Sampling
    • Bipartite Graph
      • Check Bipartite Graph
      • Maximal Matching - Hungarian Algorithm
    • String Pattern Matching
      • KMP Algorithm
      • Rabin Karp Algorithm
  • System Design
    • Consistent Hashing
    • Bloom Filter
    • Caching
      • LRU
      • LFU
    • Mini Twitter
    • Tiny Url
Powered by GitBook
On this page
  • Segment Tree(Interval Tree)
  • 1. Introduction
  • 2. Implementation
  • 3. Time & Space Complexity

Was this helpful?

  1. Data Structure

Segment Tree

Segment Tree(Interval Tree)

1. Introduction

A segment tree is a data structure for storing intervals. It is useful to get the range sum given an interval, range minimum/maximum query.

2. Implementation

public class SegmentTree {
    class SegmentTreeNode {
        int start, end, max, min, sum;
        SegmentTreeNode left, right;

        public SegmentTreeNode(int start, int end, int max, int min, int sum) {
            this.start = start;
            this.end = end;
            this.max = max;
            this.min = min;
            this.sum = sum;
        }
    }

    SegmentTreeNode root;

    public SegmentTree(int[] nums) {
        this.root = build(0, nums.length - 1, nums);
    }

    public SegmentTreeNode build(int start, int end, int[] nums) {
        if (start > end) {
            return null;
        }

        SegmentTreeNode node = new SegmentTreeNode(start, end, nums[start], nums[start], nums[start]);

        if (start != end) {
            int mid = start + (end - start) / 2;
            node.left = build(start, mid, nums);
            node.right = build(mid + 1, end, nums);

            if (node.left != null && node.right != null) {
                node.sum = node.left.sum + node.right.sum;
                node.max = Math.max(node.left.max, node.right.max);
                node.min = Math.min(node.left.min, node.right.min);
            }
            else if (node.left != null) {
                node.sum = node.left.sum;
                node.max = Math.max(node.max, node.left.max);
                node.min = Math.min(node.min, node.left.min);
            }
            else {
                node.sum = node.right.sum;
                node.max = Math.max(node.max, node.right.max);
                node.min = Math.min(node.min, node.right.min);
            }
        }
        return node;
    }

    // Range Sum Query
    public int querySum(SegmentTreeNode node, int start, int end) {
        if (node == null) {
            return 0;
        }

        if (node.start == start && node.end == end) {
            return node.sum;
        }

        int mid = node.start + (node.end - node.start) / 2;

        if (start > mid && end > mid) {
            return querySum(node.right, start, end);
        }
        else if (start <= mid && end <= mid) {
            return querySum(node.left, start, end);
        }
        else {
            return querySum(node.left, start, mid) + querySum(node.right, mid + 1, end);
        }
    }

    // Range Maximum Query
    public int queryMax(SegmentTreeNode node, int start, int end) {
        if (node == null || start > end) {
            return 0;
        }

        if (node.start == start && node.end == end) {
            return node.max;
        }

        int mid = node.start + (node.end - node.start) / 2;

        if (start <= mid && end <= mid) {
            return queryMax(node.left, start, end);
        }
        else if (start > mid && end > mid) {
            return queryMax(node.right, start, end);
        }
        else {
            return Math.max(queryMax(node.left, start, mid), queryMax(node.right, mid + 1, end));
        }
    }

    // Range Minimum Query
    public int queryMin(SegmentTreeNode node, int start, int end) {
        if (node == null || start > end) {
            return 0;
        }

        if (node.start == start && node.end == end) {
            return node.min;
        }

        int mid = node.start + (node.end - node.start) / 2;

        if (start <= mid && end <= mid) {
            return queryMax(node.left, start, end);
        }
        else if (start > mid && end > mid) {
            return queryMax(node.right, start, end);
        }
        else {
            return Math.min(queryMin(node.left, start, mid), queryMin(node.right, mid + 1, end));
        }
    }

    public void modify(SegmentTreeNode node, int index, int value) {
        if (node == null) {
            return;
        }

        if (node.start == index && node.end == index) {
            node.max = value;
            node.min = value;
            node.sum = value;
            return;
        }

        int mid = node.start + (node.end - node.start) / 2;

        if (index <= mid) {
            modify(node.left, index, value);
        }
        else {
            modify(node.right, index, value);
        }

        if (node.left != null && node.right != null) {
            node.sum = node.left.sum + node.right.sum;
            node.max = Math.max(node.left.max, node.right.max);
            node.min = Math.min(node.left.min, node.right.min);
        }
        else if (node.left != null) {
            node.sum = node.left.sum;
            node.max = Math.max(node.max, node.left.max);
            node.min = Math.min(node.min, node.left.min);
        }
        else {
            node.sum = node.right.sum;
            node.max = Math.max(node.max, node.right.max);
            node.min = Math.min(node.min, node.right.min);
        }
    }
}

3. Time & Space Complexity

  • build: O(n)

  • querySum, queryMax, queryMin: O(logn)

  • modify: O(logn)

  • Space: O(n)

PreviousTrieNextTree

Last updated 5 years ago

Was this helpful?