My Algorithm Summary
  • Introduction
  • Data Structure
    • Linked List
    • Stack
      • Monotone Stack
        • 42 Trapping Rain Water
        • 84 Largest Rectangle in Histogram
        • 85 Maximal Rectangle
        • 255 Verify Preorder Sequence in Binary Search Tree
        • 316 Remove Duplicate Characters
        • 402 Remove K Digits
        • 456 132 Pattern
        • 496 Next Greater Element I
        • 503 Next Greater Element II
      • 20 Valid Parentheses
      • 71 Simplify Path
      • 150 Evaluate Reverse Polish Notation
      • 155 Min Stack
      • 173 Binary Search Tree Iterator
      • 224 Basic Calculator
      • 227 Basic Calculator II
      • 232 Implement Queue using Stacks
      • 341 Flatten Nested List Iterator
      • 394 Decode String
      • 439 Ternary Expression Parser
      • 636 Exclusive Time of Functions
    • Heap
    • Trie
    • Segment Tree
    • Tree
      • 94 Binary Tree Inorder Traversal
      • 104 Maximum Depth of Binary Tree
      • 144 Binary Tree Preorder Traversal
      • 145 Binary Tree Postorder Traversal
      • 199 Binary Tree Right Side View
      • 226 Invert Binary Tree
      • 272 Closest Binary Search Tree Value II
      • 508 Most Frequent Subtree Sum
      • 513 Find Bottom Left Tree Value
      • 515 Find Largest Value in Each Tree Row
      • 617 Merge Two Binary Trees
      • 637 Average of Levels in Binary Tree
      • 653 Two Sum IV - Input is a BST
      • 654 Maximum Binary Tree
      • 669 Trim a Binary Search Tree
      • 666 Path Sum IV
      • 230 Kth Smallest Element in a BST
      • 250 Count Univalue Subtrees
      • 538 Convert BST to Greater Tree
      • 404 Sum of Left Leaves
      • 582 Kill Process
      • 112 Path Sum
      • 108 Convert Sorted Array to Binary Search Tree
      • 111 Minimum Depth of Binary Tree
      • 501 Find Mode in Binary Search Tree
      • 102 Binary Tree Level Order Traversal
      • 107 Binary Tree Level Order Traversal II
      • 103 Binary Tree Zigzag Level Order Traversal
      • 113 Path Sum II
      • 437 Path Sum III
      • 99 Recover Binary Search Tree
      • 687 Longest Univalue Path
      • 285 Inorder Successor in BST
      • 101 Symmetric Tree
      • 129 Sum Root to Leaf Numbers
      • 298 Binary Tree Longest Consecutive Sequence
      • 270 Closest Binary Search Tree Value
      • 549 Binary Tree Longest Consecutive Sequence II
      • 98 Validate Binary Search Tree
      • 652 Find Duplicate Subtrees
      • 314 Binary Tree Vertical Order Traversal
      • 333 Largest BST Subtree
      • 563 Binary Tree Tilt
      • 110 Balanced Binary Tree
    • Graph
      • Detect Cycle
  • Algorithms
    • Union Find
      • 695 Max Area of Island
      • 684 Redundant Connection
    • Binary Search
    • Topological Sorting
    • Breadth-First Search
      • 694 Number of Distinct Islands
    • Depth-First Search
    • Two Pointers
    • Sorting
    • Backtacking
    • Dynamic Programming
      • Interval DP
        • Matrix Chain Multiplication
        • Merge Stone
      • KnapSack Problem
        • 0-1 KnapSack
        • Unbounded KnapSack
      • Longest Increasing Subsequence
      • Longest Common Subsequence
    • Reservior Sampling
    • Bipartite Graph
      • Check Bipartite Graph
      • Maximal Matching - Hungarian Algorithm
    • String Pattern Matching
      • KMP Algorithm
      • Rabin Karp Algorithm
  • System Design
    • Consistent Hashing
    • Bloom Filter
    • Caching
      • LRU
      • LFU
    • Mini Twitter
    • Tiny Url
Powered by GitBook
On this page
  • 666. Path Sum IV
  • 1. Question
  • 2. Implementation
  • 3. Time & Space Complexity

Was this helpful?

  1. Data Structure
  2. Tree

666 Path Sum IV

Previous669 Trim a Binary Search TreeNext230 Kth Smallest Element in a BST

Last updated 5 years ago

Was this helpful?

666.

1. Question

If the depth of a tree is smaller than5, then this tree can be represented by a list of three-digits integers.

For each integer in this list:

  1. The hundreds digit represents the depth

    Dof this node,1 <= D <= 4.

  2. The tens digit represents the positionPof this node in the level it belongs to,1 <= P <= 8

    . The position is the same as that in a full binary tree.

  3. The units digit represents the valueVof this node,0 <= V <= 9.

Given a list ofascendingthree-digits integers representing a binary with the depth smaller than 5. You need to return the sum of all paths from the root towards the leaves.

Example 1:

Input:
 [113, 215, 221]

Output:
 12

Explanation:

The tree that the list represents is:
    3
   / \
  5   1

The path sum is (3 + 5) + (3 + 1) = 12.

Example 2:

Input:
 [113, 221]

Output:
 4

Explanation:

The tree that the list represents is: 
    3
     \
      1

The path sum is (3 + 1) = 4.

2. Implementation

思路:这题给一个数组,数组的每个数是都是三位数,百位数代表在树的第几层,中位数代表数在该层的位置(从1开始算), 而个位数则代表该节点在树里的值。

(1) 题目提到,位置的信息是和full binary tree一样的,这意味着,给定一个node的位置,我们知道它的left children在下一层的位置是node的position * 2 -1(position是从1开始), right children的position则是node的position * 2。

(2)有了以上这些信息后,我们就可以利用一个map, 以数组每个数的前面两位作为key, 最后一位作为value, 放在map里,利用Path Sum同样的思路从根节点(数组第一个数)递归地找出path sum

class Solution {
    public int pathSum(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }

        Map<Integer, Integer> map = new HashMap<>();
        for (int num : nums) {
            int key = num / 10;
            int value = num % 10;
            map.put(key, value);
        }

        int[] sum = new int[1];
        getPathSum(nums[0] / 10, 0, map, sum);
        return sum[0];
    }

    public void getPathSum(int nodeInfo, int curSum, Map<Integer, Integer> map, int[] sum) {
        if (!map.containsKey(nodeInfo)) {
            return;
        }

        int level = nodeInfo / 10;
        int pos = nodeInfo % 10;
        int value = map.get(nodeInfo);

        curSum = curSum + value;

        int left = (level + 1) * 10 + pos * 2 - 1;
        int right = (level + 1) * 10 + pos * 2;

        if (!map.containsKey(left) && !map.containsKey(right)) {
            sum[0] += curSum;
            return;
        }

        getPathSum(left, curSum, map, sum);
        getPathSum(right, curSum, map, sum);
    }
}

3. Time & Space Complexity

时间空间复杂度都是O(n)

Path Sum IV