Dynamic Programming

Dynamic Programming

1. LIS

(1) Algorithm

    // Time: O(n^2), Space: O(n)
    public int lengthOfLIS(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }

        // LIS[i] indicate the longest increasing subsequence found at index i
        int[] LIS = new int[nums.length];
        Arrays.fill(LIS, 1);

        for (int i = 1; i < nums.length; i++) {
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j] && (LIS[j] + 1) > LIS[i]) {
                    LIS[i] = LIS[j] + 1;
                }
            }
        }

        int max = 0;
        for (int i = 0; i < LIS.length; i++) {
            max = Math.max(LIS[i], max);
        }
        return max
    }

(3) Questions

Longest Increasing Subsequence

2. Longest Common Subsequence/ Longest Common Substring

(1) Algorithm

(2) Questions

Edit Distance, [Palindrome Partitioning II](https://leetcode.com/problems/palindrome-partitioning-ii/?tab=Description\)

3. Backpack Problem

Last updated

Was this helpful?