My Algorithm Summary
  • Introduction
  • Data Structure
    • Linked List
    • Stack
      • Monotone Stack
        • 42 Trapping Rain Water
        • 84 Largest Rectangle in Histogram
        • 85 Maximal Rectangle
        • 255 Verify Preorder Sequence in Binary Search Tree
        • 316 Remove Duplicate Characters
        • 402 Remove K Digits
        • 456 132 Pattern
        • 496 Next Greater Element I
        • 503 Next Greater Element II
      • 20 Valid Parentheses
      • 71 Simplify Path
      • 150 Evaluate Reverse Polish Notation
      • 155 Min Stack
      • 173 Binary Search Tree Iterator
      • 224 Basic Calculator
      • 227 Basic Calculator II
      • 232 Implement Queue using Stacks
      • 341 Flatten Nested List Iterator
      • 394 Decode String
      • 439 Ternary Expression Parser
      • 636 Exclusive Time of Functions
    • Heap
    • Trie
    • Segment Tree
    • Tree
      • 94 Binary Tree Inorder Traversal
      • 104 Maximum Depth of Binary Tree
      • 144 Binary Tree Preorder Traversal
      • 145 Binary Tree Postorder Traversal
      • 199 Binary Tree Right Side View
      • 226 Invert Binary Tree
      • 272 Closest Binary Search Tree Value II
      • 508 Most Frequent Subtree Sum
      • 513 Find Bottom Left Tree Value
      • 515 Find Largest Value in Each Tree Row
      • 617 Merge Two Binary Trees
      • 637 Average of Levels in Binary Tree
      • 653 Two Sum IV - Input is a BST
      • 654 Maximum Binary Tree
      • 669 Trim a Binary Search Tree
      • 666 Path Sum IV
      • 230 Kth Smallest Element in a BST
      • 250 Count Univalue Subtrees
      • 538 Convert BST to Greater Tree
      • 404 Sum of Left Leaves
      • 582 Kill Process
      • 112 Path Sum
      • 108 Convert Sorted Array to Binary Search Tree
      • 111 Minimum Depth of Binary Tree
      • 501 Find Mode in Binary Search Tree
      • 102 Binary Tree Level Order Traversal
      • 107 Binary Tree Level Order Traversal II
      • 103 Binary Tree Zigzag Level Order Traversal
      • 113 Path Sum II
      • 437 Path Sum III
      • 99 Recover Binary Search Tree
      • 687 Longest Univalue Path
      • 285 Inorder Successor in BST
      • 101 Symmetric Tree
      • 129 Sum Root to Leaf Numbers
      • 298 Binary Tree Longest Consecutive Sequence
      • 270 Closest Binary Search Tree Value
      • 549 Binary Tree Longest Consecutive Sequence II
      • 98 Validate Binary Search Tree
      • 652 Find Duplicate Subtrees
      • 314 Binary Tree Vertical Order Traversal
      • 333 Largest BST Subtree
      • 563 Binary Tree Tilt
      • 110 Balanced Binary Tree
    • Graph
      • Detect Cycle
  • Algorithms
    • Union Find
      • 695 Max Area of Island
      • 684 Redundant Connection
    • Binary Search
    • Topological Sorting
    • Breadth-First Search
      • 694 Number of Distinct Islands
    • Depth-First Search
    • Two Pointers
    • Sorting
    • Backtacking
    • Dynamic Programming
      • Interval DP
        • Matrix Chain Multiplication
        • Merge Stone
      • KnapSack Problem
        • 0-1 KnapSack
        • Unbounded KnapSack
      • Longest Increasing Subsequence
      • Longest Common Subsequence
    • Reservior Sampling
    • Bipartite Graph
      • Check Bipartite Graph
      • Maximal Matching - Hungarian Algorithm
    • String Pattern Matching
      • KMP Algorithm
      • Rabin Karp Algorithm
  • System Design
    • Consistent Hashing
    • Bloom Filter
    • Caching
      • LRU
      • LFU
    • Mini Twitter
    • Tiny Url
Powered by GitBook
On this page
  • Dynamic Programming
  • 1. LIS
  • (1) Algorithm
  • (2) Optimization: DP + Binary Search
  • (3) Questions
  • 2. Longest Common Subsequence/ Longest Common Substring
  • (1) Algorithm
  • (2) Questions
  • 3. Backpack Problem

Was this helpful?

  1. Algorithms

Dynamic Programming

Dynamic Programming

1. LIS

(1) Algorithm

    // Time: O(n^2), Space: O(n)
    public int lengthOfLIS(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }

        // LIS[i] indicate the longest increasing subsequence found at index i
        int[] LIS = new int[nums.length];
        Arrays.fill(LIS, 1);

        for (int i = 1; i < nums.length; i++) {
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j] && (LIS[j] + 1) > LIS[i]) {
                    LIS[i] = LIS[j] + 1;
                }
            }
        }

        int max = 0;
        for (int i = 0; i < LIS.length; i++) {
            max = Math.max(LIS[i], max);
        }
        return max
    }

(2) Optimization: DP + Binary Search

    // Time: O(nlogn), Space: O(n)
    public int lengthOfLIS(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }

        int n = nums.length;
        int[] lis = new int[n];
        Arrays.fill(lis, 1);

        int start = 0, end = 0, mid;
        int index = 0;

        for (int num : nums) {
            start = 0;
            end = index;

            while (start < end) {
                mid = start + (end - start) / 2;

                if (lis[mid] < num) {
                    start = mid + 1;
                }
                else {
                    end = mid;
                }
            }
            lis[start] = num;
            if (start == index) index++;
        }
        return index;
    }

(3) Questions

2. Longest Common Subsequence/ Longest Common Substring

(1) Algorithm

    // Longest Common Subsequence
    public static int LCS(String s1, String s2) {
        int[][] dp = new int[s1.length() + 1][s2.length() + 1];

        // The first row and first column is empty string, so dp[i][j] = 0 when i = 0 or j = 0
        for (int i = 1; i <= s1.length(); i++) {
            for (int j = 1; j <= s2.length(); j++) {
                if (s1.charAt(i - 1) == s2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }
                else {
                    dp[i][j] = Math.max(dp[i-1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[s1.length()][s2.length()];
    }

    // Longest Common Substring
    public static int longestCommonSubstring(String s1, String s2) {
    // Method 2: Dynamic Programming
    int m = s1.length(), n = s2.length();
    int max = 0;
    int[][] dp = new int[m + 1][n + 1];

    for (int i = 1; i <= m; i++) {
        for (int j = 1; j <= n; j++) {
        if (s1.charAt(i - 1) == s2.charAt(j - 1)) {
            dp[i][j] = dp[i - 1][j - 1] + 1;
            max = Math.max(dp[i][j], max);
        }
        else {
            dp[i][j] = 0;
        }
        }
    }
    return max;
    }

(2) Questions

3. Backpack Problem

PreviousBacktackingNextInterval DP

Last updated 5 years ago

Was this helpful?

, [Palindrome Partitioning II]()

Longest Increasing Subsequence
Edit Distance
https://leetcode.com/problems/palindrome-partitioning-ii/?tab=Description\