My Algorithm Summary
  • Introduction
  • Data Structure
    • Linked List
    • Stack
      • Monotone Stack
        • 42 Trapping Rain Water
        • 84 Largest Rectangle in Histogram
        • 85 Maximal Rectangle
        • 255 Verify Preorder Sequence in Binary Search Tree
        • 316 Remove Duplicate Characters
        • 402 Remove K Digits
        • 456 132 Pattern
        • 496 Next Greater Element I
        • 503 Next Greater Element II
      • 20 Valid Parentheses
      • 71 Simplify Path
      • 150 Evaluate Reverse Polish Notation
      • 155 Min Stack
      • 173 Binary Search Tree Iterator
      • 224 Basic Calculator
      • 227 Basic Calculator II
      • 232 Implement Queue using Stacks
      • 341 Flatten Nested List Iterator
      • 394 Decode String
      • 439 Ternary Expression Parser
      • 636 Exclusive Time of Functions
    • Heap
    • Trie
    • Segment Tree
    • Tree
      • 94 Binary Tree Inorder Traversal
      • 104 Maximum Depth of Binary Tree
      • 144 Binary Tree Preorder Traversal
      • 145 Binary Tree Postorder Traversal
      • 199 Binary Tree Right Side View
      • 226 Invert Binary Tree
      • 272 Closest Binary Search Tree Value II
      • 508 Most Frequent Subtree Sum
      • 513 Find Bottom Left Tree Value
      • 515 Find Largest Value in Each Tree Row
      • 617 Merge Two Binary Trees
      • 637 Average of Levels in Binary Tree
      • 653 Two Sum IV - Input is a BST
      • 654 Maximum Binary Tree
      • 669 Trim a Binary Search Tree
      • 666 Path Sum IV
      • 230 Kth Smallest Element in a BST
      • 250 Count Univalue Subtrees
      • 538 Convert BST to Greater Tree
      • 404 Sum of Left Leaves
      • 582 Kill Process
      • 112 Path Sum
      • 108 Convert Sorted Array to Binary Search Tree
      • 111 Minimum Depth of Binary Tree
      • 501 Find Mode in Binary Search Tree
      • 102 Binary Tree Level Order Traversal
      • 107 Binary Tree Level Order Traversal II
      • 103 Binary Tree Zigzag Level Order Traversal
      • 113 Path Sum II
      • 437 Path Sum III
      • 99 Recover Binary Search Tree
      • 687 Longest Univalue Path
      • 285 Inorder Successor in BST
      • 101 Symmetric Tree
      • 129 Sum Root to Leaf Numbers
      • 298 Binary Tree Longest Consecutive Sequence
      • 270 Closest Binary Search Tree Value
      • 549 Binary Tree Longest Consecutive Sequence II
      • 98 Validate Binary Search Tree
      • 652 Find Duplicate Subtrees
      • 314 Binary Tree Vertical Order Traversal
      • 333 Largest BST Subtree
      • 563 Binary Tree Tilt
      • 110 Balanced Binary Tree
    • Graph
      • Detect Cycle
  • Algorithms
    • Union Find
      • 695 Max Area of Island
      • 684 Redundant Connection
    • Binary Search
    • Topological Sorting
    • Breadth-First Search
      • 694 Number of Distinct Islands
    • Depth-First Search
    • Two Pointers
    • Sorting
    • Backtacking
    • Dynamic Programming
      • Interval DP
        • Matrix Chain Multiplication
        • Merge Stone
      • KnapSack Problem
        • 0-1 KnapSack
        • Unbounded KnapSack
      • Longest Increasing Subsequence
      • Longest Common Subsequence
    • Reservior Sampling
    • Bipartite Graph
      • Check Bipartite Graph
      • Maximal Matching - Hungarian Algorithm
    • String Pattern Matching
      • KMP Algorithm
      • Rabin Karp Algorithm
  • System Design
    • Consistent Hashing
    • Bloom Filter
    • Caching
      • LRU
      • LFU
    • Mini Twitter
    • Tiny Url
Powered by GitBook
On this page
  • 496. Next Greater Element I
  • 1. Question
  • 2. Implementation
  • 3. Time & Space Complexity

Was this helpful?

  1. Data Structure
  2. Stack
  3. Monotone Stack

496 Next Greater Element I

496. Next Greater Element I

1. Question

You are given two arrays(without duplicates)nums1andnums2wherenums1’s elements are subset ofnums2. Find all the next greater numbers fornums1's elements in the corresponding places ofnums2.

The Next Greater Number of a numberxinnums1is the first greater number to its right innums2. If it does not exist, output -1 for this number.

Example 1:

Input:
nums1 = [4,1,2], 
nums2 = [1,3,4,2].

Output: [-1,3,-1]

Explanation:
    For number 4 in the first array, you cannot find the next greater number for it in the second array, so output -1.
    For number 1 in the first array, the next greater number for it in the second array is 3.
    For number 2 in the first array, there is no next greater number for it in the second array, so output -1.

Example 2:

Input:
nums1 = [2,4], 
nums2 = [1,2,3,4].

Output: [3,-1]

Explanation:
    For number 2 in the first array, the next greater number for it in the second array is 3.
    For number 4 in the first array, there is no next greater number for it in the second array, so output -1.

Note:

  1. All elements in nums1andnums2are unique.

  2. The length of bothnums1andnums2would not exceed 1000.

2. Implementation

思路: 题目已经说明nums1是nums2的子集,所以可以对nums2进行遍历,维护一个单调递减stack, 当栈顶的数小于当前nums2的数时,则nums2是栈顶数的Next Greater Element。同时通过一个HashMap记录每个元素的Next Greater Element即可

class Solution {
    public int[] nextGreaterElement(int[] nums1, int[] nums2) {
        Map<Integer, Integer> map = new HashMap<>();
        Stack<Integer> stack = new Stack<>();

        for (int num : nums2) {
            while (!stack.isEmpty() && stack.peek() < num) {
                map.put(stack.pop(), num);
            }
            stack.push(num);
        }

        int[] res = new int[nums1.length];
        for (int i = 0; i < nums1.length; i++) {
            res[i] = map.getOrDefault(nums1[i], -1);
        }
        return res;
    }
}

3. Time & Space Complexity

时间和空间复杂度都为O(n), n为nums2里的元素个数

Previous456 132 PatternNext503 Next Greater Element II

Last updated 5 years ago

Was this helpful?