My Algorithm Summary
  • Introduction
  • Data Structure
    • Linked List
    • Stack
      • Monotone Stack
        • 42 Trapping Rain Water
        • 84 Largest Rectangle in Histogram
        • 85 Maximal Rectangle
        • 255 Verify Preorder Sequence in Binary Search Tree
        • 316 Remove Duplicate Characters
        • 402 Remove K Digits
        • 456 132 Pattern
        • 496 Next Greater Element I
        • 503 Next Greater Element II
      • 20 Valid Parentheses
      • 71 Simplify Path
      • 150 Evaluate Reverse Polish Notation
      • 155 Min Stack
      • 173 Binary Search Tree Iterator
      • 224 Basic Calculator
      • 227 Basic Calculator II
      • 232 Implement Queue using Stacks
      • 341 Flatten Nested List Iterator
      • 394 Decode String
      • 439 Ternary Expression Parser
      • 636 Exclusive Time of Functions
    • Heap
    • Trie
    • Segment Tree
    • Tree
      • 94 Binary Tree Inorder Traversal
      • 104 Maximum Depth of Binary Tree
      • 144 Binary Tree Preorder Traversal
      • 145 Binary Tree Postorder Traversal
      • 199 Binary Tree Right Side View
      • 226 Invert Binary Tree
      • 272 Closest Binary Search Tree Value II
      • 508 Most Frequent Subtree Sum
      • 513 Find Bottom Left Tree Value
      • 515 Find Largest Value in Each Tree Row
      • 617 Merge Two Binary Trees
      • 637 Average of Levels in Binary Tree
      • 653 Two Sum IV - Input is a BST
      • 654 Maximum Binary Tree
      • 669 Trim a Binary Search Tree
      • 666 Path Sum IV
      • 230 Kth Smallest Element in a BST
      • 250 Count Univalue Subtrees
      • 538 Convert BST to Greater Tree
      • 404 Sum of Left Leaves
      • 582 Kill Process
      • 112 Path Sum
      • 108 Convert Sorted Array to Binary Search Tree
      • 111 Minimum Depth of Binary Tree
      • 501 Find Mode in Binary Search Tree
      • 102 Binary Tree Level Order Traversal
      • 107 Binary Tree Level Order Traversal II
      • 103 Binary Tree Zigzag Level Order Traversal
      • 113 Path Sum II
      • 437 Path Sum III
      • 99 Recover Binary Search Tree
      • 687 Longest Univalue Path
      • 285 Inorder Successor in BST
      • 101 Symmetric Tree
      • 129 Sum Root to Leaf Numbers
      • 298 Binary Tree Longest Consecutive Sequence
      • 270 Closest Binary Search Tree Value
      • 549 Binary Tree Longest Consecutive Sequence II
      • 98 Validate Binary Search Tree
      • 652 Find Duplicate Subtrees
      • 314 Binary Tree Vertical Order Traversal
      • 333 Largest BST Subtree
      • 563 Binary Tree Tilt
      • 110 Balanced Binary Tree
    • Graph
      • Detect Cycle
  • Algorithms
    • Union Find
      • 695 Max Area of Island
      • 684 Redundant Connection
    • Binary Search
    • Topological Sorting
    • Breadth-First Search
      • 694 Number of Distinct Islands
    • Depth-First Search
    • Two Pointers
    • Sorting
    • Backtacking
    • Dynamic Programming
      • Interval DP
        • Matrix Chain Multiplication
        • Merge Stone
      • KnapSack Problem
        • 0-1 KnapSack
        • Unbounded KnapSack
      • Longest Increasing Subsequence
      • Longest Common Subsequence
    • Reservior Sampling
    • Bipartite Graph
      • Check Bipartite Graph
      • Maximal Matching - Hungarian Algorithm
    • String Pattern Matching
      • KMP Algorithm
      • Rabin Karp Algorithm
  • System Design
    • Consistent Hashing
    • Bloom Filter
    • Caching
      • LRU
      • LFU
    • Mini Twitter
    • Tiny Url
Powered by GitBook
On this page
  • 496. Next Greater Element I
  • 1. Question
  • 2. Implementation
  • 3. Time & Space Complexity

Was this helpful?

  1. Data Structure
  2. Stack
  3. Monotone Stack

496 Next Greater Element I

Previous456 132 PatternNext503 Next Greater Element II

Last updated 5 years ago

Was this helpful?

496.

1. Question

You are given two arrays(without duplicates)nums1andnums2wherenums1’s elements are subset ofnums2. Find all the next greater numbers fornums1's elements in the corresponding places ofnums2.

The Next Greater Number of a numberxinnums1is the first greater number to its right innums2. If it does not exist, output -1 for this number.

Example 1:

Input:
nums1 = [4,1,2], 
nums2 = [1,3,4,2].

Output: [-1,3,-1]

Explanation:
    For number 4 in the first array, you cannot find the next greater number for it in the second array, so output -1.
    For number 1 in the first array, the next greater number for it in the second array is 3.
    For number 2 in the first array, there is no next greater number for it in the second array, so output -1.

Example 2:

Input:
nums1 = [2,4], 
nums2 = [1,2,3,4].

Output: [3,-1]

Explanation:
    For number 2 in the first array, the next greater number for it in the second array is 3.
    For number 4 in the first array, there is no next greater number for it in the second array, so output -1.

Note:

  1. All elements in nums1andnums2are unique.

  2. The length of bothnums1andnums2would not exceed 1000.

2. Implementation

思路: 题目已经说明nums1是nums2的子集,所以可以对nums2进行遍历,维护一个单调递减stack, 当栈顶的数小于当前nums2的数时,则nums2是栈顶数的Next Greater Element。同时通过一个HashMap记录每个元素的Next Greater Element即可

class Solution {
    public int[] nextGreaterElement(int[] nums1, int[] nums2) {
        Map<Integer, Integer> map = new HashMap<>();
        Stack<Integer> stack = new Stack<>();

        for (int num : nums2) {
            while (!stack.isEmpty() && stack.peek() < num) {
                map.put(stack.pop(), num);
            }
            stack.push(num);
        }

        int[] res = new int[nums1.length];
        for (int i = 0; i < nums1.length; i++) {
            res[i] = map.getOrDefault(nums1[i], -1);
        }
        return res;
    }
}

3. Time & Space Complexity

时间和空间复杂度都为O(n), n为nums2里的元素个数

Next Greater Element I