My Algorithm Summary
  • Introduction
  • Data Structure
    • Linked List
    • Stack
      • Monotone Stack
        • 42 Trapping Rain Water
        • 84 Largest Rectangle in Histogram
        • 85 Maximal Rectangle
        • 255 Verify Preorder Sequence in Binary Search Tree
        • 316 Remove Duplicate Characters
        • 402 Remove K Digits
        • 456 132 Pattern
        • 496 Next Greater Element I
        • 503 Next Greater Element II
      • 20 Valid Parentheses
      • 71 Simplify Path
      • 150 Evaluate Reverse Polish Notation
      • 155 Min Stack
      • 173 Binary Search Tree Iterator
      • 224 Basic Calculator
      • 227 Basic Calculator II
      • 232 Implement Queue using Stacks
      • 341 Flatten Nested List Iterator
      • 394 Decode String
      • 439 Ternary Expression Parser
      • 636 Exclusive Time of Functions
    • Heap
    • Trie
    • Segment Tree
    • Tree
      • 94 Binary Tree Inorder Traversal
      • 104 Maximum Depth of Binary Tree
      • 144 Binary Tree Preorder Traversal
      • 145 Binary Tree Postorder Traversal
      • 199 Binary Tree Right Side View
      • 226 Invert Binary Tree
      • 272 Closest Binary Search Tree Value II
      • 508 Most Frequent Subtree Sum
      • 513 Find Bottom Left Tree Value
      • 515 Find Largest Value in Each Tree Row
      • 617 Merge Two Binary Trees
      • 637 Average of Levels in Binary Tree
      • 653 Two Sum IV - Input is a BST
      • 654 Maximum Binary Tree
      • 669 Trim a Binary Search Tree
      • 666 Path Sum IV
      • 230 Kth Smallest Element in a BST
      • 250 Count Univalue Subtrees
      • 538 Convert BST to Greater Tree
      • 404 Sum of Left Leaves
      • 582 Kill Process
      • 112 Path Sum
      • 108 Convert Sorted Array to Binary Search Tree
      • 111 Minimum Depth of Binary Tree
      • 501 Find Mode in Binary Search Tree
      • 102 Binary Tree Level Order Traversal
      • 107 Binary Tree Level Order Traversal II
      • 103 Binary Tree Zigzag Level Order Traversal
      • 113 Path Sum II
      • 437 Path Sum III
      • 99 Recover Binary Search Tree
      • 687 Longest Univalue Path
      • 285 Inorder Successor in BST
      • 101 Symmetric Tree
      • 129 Sum Root to Leaf Numbers
      • 298 Binary Tree Longest Consecutive Sequence
      • 270 Closest Binary Search Tree Value
      • 549 Binary Tree Longest Consecutive Sequence II
      • 98 Validate Binary Search Tree
      • 652 Find Duplicate Subtrees
      • 314 Binary Tree Vertical Order Traversal
      • 333 Largest BST Subtree
      • 563 Binary Tree Tilt
      • 110 Balanced Binary Tree
    • Graph
      • Detect Cycle
  • Algorithms
    • Union Find
      • 695 Max Area of Island
      • 684 Redundant Connection
    • Binary Search
    • Topological Sorting
    • Breadth-First Search
      • 694 Number of Distinct Islands
    • Depth-First Search
    • Two Pointers
    • Sorting
    • Backtacking
    • Dynamic Programming
      • Interval DP
        • Matrix Chain Multiplication
        • Merge Stone
      • KnapSack Problem
        • 0-1 KnapSack
        • Unbounded KnapSack
      • Longest Increasing Subsequence
      • Longest Common Subsequence
    • Reservior Sampling
    • Bipartite Graph
      • Check Bipartite Graph
      • Maximal Matching - Hungarian Algorithm
    • String Pattern Matching
      • KMP Algorithm
      • Rabin Karp Algorithm
  • System Design
    • Consistent Hashing
    • Bloom Filter
    • Caching
      • LRU
      • LFU
    • Mini Twitter
    • Tiny Url
Powered by GitBook
On this page
  • 255. Verify Preorder Sequence in Binary Search Tree
  • 1. Question
  • 2. Implementation
  • 3. Time & Space Complexity

Was this helpful?

  1. Data Structure
  2. Stack
  3. Monotone Stack

255 Verify Preorder Sequence in Binary Search Tree

255. Verify Preorder Sequence in Binary Search Tree

1. Question

Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary search tree.

You may assume each number in the sequence is unique.

Follow up: Could you do it using only constant space complexity?

2. Implementation

思路:前序遍历的规律是数组是先递减然后再递增,所以我们维护一个变量min和单调递减的stack,表示当前最小的数值,如果当前的数小于min则返回false。如果栈顶的数比当前的数小,则将min更新为栈顶的数。

public class Solution {
    public boolean verifyPreorder(int[] preorder) {
        int min = Integer.MIN_VALUE;

        Stack<Integer> stack = new Stack<>();

        for (int num : preorder) {
            if (num < min) {
                return false;
            }

            while (!stack.isEmpty() && stack.peek() < num) {
                min = stack.pop();
            }
            stack.push(num);
        }
        return true;
    }
}

Follow up: 题目要求要constant space, 我们可以直接用原数组模拟stack

class Solution {
    public boolean verifyPreorder(int[] preorder) {
        int index = -1;
        int min = Integer.MIN_VALUE;

        for (int num : preorder) {
            if (num < min) {
                return false;
            }

            while (index >= 0 && preorder[index] < num) {
                min = preorder[index--];
            }
            preorder[++index] = num;
        }
        return true;
    }
}

3. Time & Space Complexity

时间都是O(n),利用栈的话空间复杂度是O(n), follow-up的做法空间复杂度是O(1)

Previous85 Maximal RectangleNext316 Remove Duplicate Characters

Last updated 5 years ago

Was this helpful?