42 Trapping Rain Water
42. Trapping Rain Water
1. Question
Givennnon-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given[0,1,0,2,1,0,1,3,2,1,2,1]
, return6
.

The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.
2. Implementation
思路:
(1) 凹陷处可以积水。所以寻找先递减后递增的位置就可以了
(2) 维护一个单调递减的Stack,当heights[stack.peek()] <= heights[i], 找到凹陷处,出栈,计算可蓄水的体积
(3) 计算体积时,以bottomIndex作为中点,向两边找出比它高的bar(corner case: 如果此时stack为空,则无法找到左边的bar)
class Solution {
public int trap(int[] height) {
Stack<Integer> stack = new Stack<>();
int n = height.length;
int water = 0, curHeight = 0, width = 0;
int res = 0;
for (int i = 0; i < n; i++) {
while (!stack.isEmpty() && height[stack.peek()] <= height[i]) {
int bottomIndex = stack.pop();
if (stack.isEmpty()) {
water = 0;
}
else {
curHeight = Math.min(height[stack.peek()], height[i]) - height[bottomIndex];
width = i - stack.peek() - 1;
water = curHeight * width;
}
res += water;
}
stack.push(i);
}
return res;
}
}
3. Time & Space Complexity
时间和空间都是O(n)
Last updated
Was this helpful?