My Algorithm Summary
  • Introduction
  • Data Structure
    • Linked List
    • Stack
      • Monotone Stack
        • 42 Trapping Rain Water
        • 84 Largest Rectangle in Histogram
        • 85 Maximal Rectangle
        • 255 Verify Preorder Sequence in Binary Search Tree
        • 316 Remove Duplicate Characters
        • 402 Remove K Digits
        • 456 132 Pattern
        • 496 Next Greater Element I
        • 503 Next Greater Element II
      • 20 Valid Parentheses
      • 71 Simplify Path
      • 150 Evaluate Reverse Polish Notation
      • 155 Min Stack
      • 173 Binary Search Tree Iterator
      • 224 Basic Calculator
      • 227 Basic Calculator II
      • 232 Implement Queue using Stacks
      • 341 Flatten Nested List Iterator
      • 394 Decode String
      • 439 Ternary Expression Parser
      • 636 Exclusive Time of Functions
    • Heap
    • Trie
    • Segment Tree
    • Tree
      • 94 Binary Tree Inorder Traversal
      • 104 Maximum Depth of Binary Tree
      • 144 Binary Tree Preorder Traversal
      • 145 Binary Tree Postorder Traversal
      • 199 Binary Tree Right Side View
      • 226 Invert Binary Tree
      • 272 Closest Binary Search Tree Value II
      • 508 Most Frequent Subtree Sum
      • 513 Find Bottom Left Tree Value
      • 515 Find Largest Value in Each Tree Row
      • 617 Merge Two Binary Trees
      • 637 Average of Levels in Binary Tree
      • 653 Two Sum IV - Input is a BST
      • 654 Maximum Binary Tree
      • 669 Trim a Binary Search Tree
      • 666 Path Sum IV
      • 230 Kth Smallest Element in a BST
      • 250 Count Univalue Subtrees
      • 538 Convert BST to Greater Tree
      • 404 Sum of Left Leaves
      • 582 Kill Process
      • 112 Path Sum
      • 108 Convert Sorted Array to Binary Search Tree
      • 111 Minimum Depth of Binary Tree
      • 501 Find Mode in Binary Search Tree
      • 102 Binary Tree Level Order Traversal
      • 107 Binary Tree Level Order Traversal II
      • 103 Binary Tree Zigzag Level Order Traversal
      • 113 Path Sum II
      • 437 Path Sum III
      • 99 Recover Binary Search Tree
      • 687 Longest Univalue Path
      • 285 Inorder Successor in BST
      • 101 Symmetric Tree
      • 129 Sum Root to Leaf Numbers
      • 298 Binary Tree Longest Consecutive Sequence
      • 270 Closest Binary Search Tree Value
      • 549 Binary Tree Longest Consecutive Sequence II
      • 98 Validate Binary Search Tree
      • 652 Find Duplicate Subtrees
      • 314 Binary Tree Vertical Order Traversal
      • 333 Largest BST Subtree
      • 563 Binary Tree Tilt
      • 110 Balanced Binary Tree
    • Graph
      • Detect Cycle
  • Algorithms
    • Union Find
      • 695 Max Area of Island
      • 684 Redundant Connection
    • Binary Search
    • Topological Sorting
    • Breadth-First Search
      • 694 Number of Distinct Islands
    • Depth-First Search
    • Two Pointers
    • Sorting
    • Backtacking
    • Dynamic Programming
      • Interval DP
        • Matrix Chain Multiplication
        • Merge Stone
      • KnapSack Problem
        • 0-1 KnapSack
        • Unbounded KnapSack
      • Longest Increasing Subsequence
      • Longest Common Subsequence
    • Reservior Sampling
    • Bipartite Graph
      • Check Bipartite Graph
      • Maximal Matching - Hungarian Algorithm
    • String Pattern Matching
      • KMP Algorithm
      • Rabin Karp Algorithm
  • System Design
    • Consistent Hashing
    • Bloom Filter
    • Caching
      • LRU
      • LFU
    • Mini Twitter
    • Tiny Url
Powered by GitBook
On this page
  • Breadth-First Search
  • 1. BFS in Graph
  • (1) Summary
  • (2) Template
  • 2. BFS in Matrix
  • (1) Summary
  • (2) Template
  • 3. Time & Space Complexity
  • 4. Questions Category

Was this helpful?

  1. Algorithms

Breadth-First Search

Breadth-First Search

1. BFS in Graph

(1) Summary

  • Create adjacent list or adjacent matrix (prefer adjacent list since it is more space efficient) to build the graph mode given the relations

  • If each node can only be visited once, we should use an boolean array to check if the node has been visited

  • Pop a node from queue, and iterate over the node's neighbors and put them to the queue

(2) Template

class UndirectedGraphNode {
      int label;
      List<UndirectedGraphNode> neighbors;
      UndirectedGraphNode(int x) { label = x; neighbors = new ArrayList<UndirectedGraphNode>(); }
};

public void BFSInGraph (UndirectedGraphNode node) {
     if (node == null) {
          return;
     }  

     Queue<UndirectedGraphNode> queue = new LinkedList<>();
     queue.add(node);

     while (!queue.isEmpty()) {
        UndirectedGraphNode curNode = queue.remove();

        for (UndirectedGraphNode nextNode : curNode.neighbors) {
            queue.add(nextNode);
        }
     }
}

2. BFS in Matrix

(1) Summary

  • Every cell in the matrix will be visited only once using BFS

(2) Template

public void BFSInMatrix(int[][] matrix) {
    int m = matrix.length;
    int n = matrix[0].length;
    int[][] directions = {{-1, 0}, {0, -1}, {1, 0}, {0, 1}};

    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            // isStartPoint() check if we should start to search at cell (i, j)
            if (isStartPoint(matrix[i][j])) {

                Queue<Integer> queue = new LinkedList<>();

                // We can add self-defined class that contains info we are looking for to the queue
                queue.add(i * n + j);

                while (!queue.isEmpty()) {
                    int size = queue.size();

                    for (int k = 0; k < size; k++) {
                        int curPoint = queue.remove();
                        int curRow = curPoint / n;
                        int curCol = curPoint % n;

                        for (int[] direction : directions) {
                            int nextRow = curRow + direction[0];
                            int nextCol = curCol + direction[1];

                            // isValid() checks if we should search in cell (nextRow, nextCol) 
                            // given the constraint
                            if (isValid(nextRow, nextCol, matrix)) {
                                queue.add(nextRow * n + nextCol);
                            }
                        }
                    }
                }
            }
        }
    }
}

3. Time & Space Complexity

Time: O(V) , where V is the number of nodes in the graph

Space: O(V)

4. Questions Category

PreviousTopological SortingNext694 Number of Distinct Islands

Last updated 5 years ago

Was this helpful?

Can calculate the distance to a given cell:

If every cell can be visited only once, we can use either a boolean array to check if a cell has been visited or change the current value in the cell to avoid visiting it again: , (Here, we can flip the character 'O' to a special character '#' so that we won't visit the same cell again)

Graph:

Matrix: ,

Others: ,

Shortest Distance from All Buildings
Surrounded Regions
Graph Valid Tree
Surrounded Regions
Shortest Distance from All Buildings
Perfect Squares
Remove Invalid Parentheses