My Algorithm Summary
  • Introduction
  • Data Structure
    • Linked List
    • Stack
      • Monotone Stack
        • 42 Trapping Rain Water
        • 84 Largest Rectangle in Histogram
        • 85 Maximal Rectangle
        • 255 Verify Preorder Sequence in Binary Search Tree
        • 316 Remove Duplicate Characters
        • 402 Remove K Digits
        • 456 132 Pattern
        • 496 Next Greater Element I
        • 503 Next Greater Element II
      • 20 Valid Parentheses
      • 71 Simplify Path
      • 150 Evaluate Reverse Polish Notation
      • 155 Min Stack
      • 173 Binary Search Tree Iterator
      • 224 Basic Calculator
      • 227 Basic Calculator II
      • 232 Implement Queue using Stacks
      • 341 Flatten Nested List Iterator
      • 394 Decode String
      • 439 Ternary Expression Parser
      • 636 Exclusive Time of Functions
    • Heap
    • Trie
    • Segment Tree
    • Tree
      • 94 Binary Tree Inorder Traversal
      • 104 Maximum Depth of Binary Tree
      • 144 Binary Tree Preorder Traversal
      • 145 Binary Tree Postorder Traversal
      • 199 Binary Tree Right Side View
      • 226 Invert Binary Tree
      • 272 Closest Binary Search Tree Value II
      • 508 Most Frequent Subtree Sum
      • 513 Find Bottom Left Tree Value
      • 515 Find Largest Value in Each Tree Row
      • 617 Merge Two Binary Trees
      • 637 Average of Levels in Binary Tree
      • 653 Two Sum IV - Input is a BST
      • 654 Maximum Binary Tree
      • 669 Trim a Binary Search Tree
      • 666 Path Sum IV
      • 230 Kth Smallest Element in a BST
      • 250 Count Univalue Subtrees
      • 538 Convert BST to Greater Tree
      • 404 Sum of Left Leaves
      • 582 Kill Process
      • 112 Path Sum
      • 108 Convert Sorted Array to Binary Search Tree
      • 111 Minimum Depth of Binary Tree
      • 501 Find Mode in Binary Search Tree
      • 102 Binary Tree Level Order Traversal
      • 107 Binary Tree Level Order Traversal II
      • 103 Binary Tree Zigzag Level Order Traversal
      • 113 Path Sum II
      • 437 Path Sum III
      • 99 Recover Binary Search Tree
      • 687 Longest Univalue Path
      • 285 Inorder Successor in BST
      • 101 Symmetric Tree
      • 129 Sum Root to Leaf Numbers
      • 298 Binary Tree Longest Consecutive Sequence
      • 270 Closest Binary Search Tree Value
      • 549 Binary Tree Longest Consecutive Sequence II
      • 98 Validate Binary Search Tree
      • 652 Find Duplicate Subtrees
      • 314 Binary Tree Vertical Order Traversal
      • 333 Largest BST Subtree
      • 563 Binary Tree Tilt
      • 110 Balanced Binary Tree
    • Graph
      • Detect Cycle
  • Algorithms
    • Union Find
      • 695 Max Area of Island
      • 684 Redundant Connection
    • Binary Search
    • Topological Sorting
    • Breadth-First Search
      • 694 Number of Distinct Islands
    • Depth-First Search
    • Two Pointers
    • Sorting
    • Backtacking
    • Dynamic Programming
      • Interval DP
        • Matrix Chain Multiplication
        • Merge Stone
      • KnapSack Problem
        • 0-1 KnapSack
        • Unbounded KnapSack
      • Longest Increasing Subsequence
      • Longest Common Subsequence
    • Reservior Sampling
    • Bipartite Graph
      • Check Bipartite Graph
      • Maximal Matching - Hungarian Algorithm
    • String Pattern Matching
      • KMP Algorithm
      • Rabin Karp Algorithm
  • System Design
    • Consistent Hashing
    • Bloom Filter
    • Caching
      • LRU
      • LFU
    • Mini Twitter
    • Tiny Url
Powered by GitBook
On this page
  • Least Frequently Cache
  • 1.Idea
  • 2.Implementation
  • 3.Time & Space Complexity

Was this helpful?

  1. System Design
  2. Caching

LFU

Least Frequently Cache

1.Idea

Least Frequently Used (LFU) is a type of cache algorithm used to manage memory. The standard characteristics of this method involve the system keeping track of the number of times a item is referenced in memory. When the cache is full and requires more room the system will purge the item with the lowest reference frequency.

2.Implementation

// Use three hashmap + linkedHashSet
public class LFUCache {
    int min;
    int capacity;
    Map<Integer, Integer> values;
    Map<Integer, Integer> freq;

    // Map frequency to a group of keys
    // The head of the LinkedHashSet is the LRU key
    Map<Integer, LinkedHashSet<Integer>> freqToLRUKeys;

    public LFUCache(int capacity) {
        this.capacity = capacity;
        this.min = -1;
        values = new HashMap<>();
        freq = new HashMap<>();
        freqToLRUKeys = new HashMap<>();
    }

    public int get(int key) {
        if (!values.containsKey(key)) {
            return -1;
        }

        // Update frequency
        int count = freq.get(key);
        freq.put(key, count + 1);

        freqToLRUKeys.get(count).remove(key);
        // When count is equal to min and the bucket of min is equal to zero, update min
        if (count == min && freqToLRUKeys.get(count).size() == 0) {
            ++min;
        }

        // Update freqToLRUKeys
        if (!freqToLRUKeys.containsKey(count + 1)) {
            freqToLRUKeys.put(count + 1, new LinkedHashSet<>());
        }
        freqToLRUKeys.get(count + 1).add(key);
        return values.get(key);
    }

    public void put(int key, int value) {
        if (capacity <= 0) {
            return;
        }

        // If key exist in the map, update it
        if (values.containsKey(key)) {
            values.put(key, value);
            get(key);
            return;
        }

        // If out of capacity, remove the least frequently used key
        if (values.size() >= capacity) {
            int evictedKey = freqToLRUKeys.get(min).iterator().next();
            freqToLRUKeys.get(min).remove(evictedKey);
            freq.remove(evictedKey);
            values.remove(evictedKey);
        }

        // If key doesn't exist in the map, add it
        values.put(key, value);
        freq.put(key, 1);

        // The min frequency should be 1
        min = 1;
        if (!freqToLRUKeys.containsKey(1)) {
            freqToLRUKeys.put(1, new LinkedHashSet<Integer>());
        }
        freqToLRUKeys.get(1).add(key);
    }
}

3.Time & Space Complexity

  1. get: O(1)

  2. put: O(1)

  3. Space: O(n), where n is the capacity

PreviousLRUNextMini Twitter

Last updated 5 years ago

Was this helpful?