My Algorithm Summary
  • Introduction
  • Data Structure
    • Linked List
    • Stack
      • Monotone Stack
        • 42 Trapping Rain Water
        • 84 Largest Rectangle in Histogram
        • 85 Maximal Rectangle
        • 255 Verify Preorder Sequence in Binary Search Tree
        • 316 Remove Duplicate Characters
        • 402 Remove K Digits
        • 456 132 Pattern
        • 496 Next Greater Element I
        • 503 Next Greater Element II
      • 20 Valid Parentheses
      • 71 Simplify Path
      • 150 Evaluate Reverse Polish Notation
      • 155 Min Stack
      • 173 Binary Search Tree Iterator
      • 224 Basic Calculator
      • 227 Basic Calculator II
      • 232 Implement Queue using Stacks
      • 341 Flatten Nested List Iterator
      • 394 Decode String
      • 439 Ternary Expression Parser
      • 636 Exclusive Time of Functions
    • Heap
    • Trie
    • Segment Tree
    • Tree
      • 94 Binary Tree Inorder Traversal
      • 104 Maximum Depth of Binary Tree
      • 144 Binary Tree Preorder Traversal
      • 145 Binary Tree Postorder Traversal
      • 199 Binary Tree Right Side View
      • 226 Invert Binary Tree
      • 272 Closest Binary Search Tree Value II
      • 508 Most Frequent Subtree Sum
      • 513 Find Bottom Left Tree Value
      • 515 Find Largest Value in Each Tree Row
      • 617 Merge Two Binary Trees
      • 637 Average of Levels in Binary Tree
      • 653 Two Sum IV - Input is a BST
      • 654 Maximum Binary Tree
      • 669 Trim a Binary Search Tree
      • 666 Path Sum IV
      • 230 Kth Smallest Element in a BST
      • 250 Count Univalue Subtrees
      • 538 Convert BST to Greater Tree
      • 404 Sum of Left Leaves
      • 582 Kill Process
      • 112 Path Sum
      • 108 Convert Sorted Array to Binary Search Tree
      • 111 Minimum Depth of Binary Tree
      • 501 Find Mode in Binary Search Tree
      • 102 Binary Tree Level Order Traversal
      • 107 Binary Tree Level Order Traversal II
      • 103 Binary Tree Zigzag Level Order Traversal
      • 113 Path Sum II
      • 437 Path Sum III
      • 99 Recover Binary Search Tree
      • 687 Longest Univalue Path
      • 285 Inorder Successor in BST
      • 101 Symmetric Tree
      • 129 Sum Root to Leaf Numbers
      • 298 Binary Tree Longest Consecutive Sequence
      • 270 Closest Binary Search Tree Value
      • 549 Binary Tree Longest Consecutive Sequence II
      • 98 Validate Binary Search Tree
      • 652 Find Duplicate Subtrees
      • 314 Binary Tree Vertical Order Traversal
      • 333 Largest BST Subtree
      • 563 Binary Tree Tilt
      • 110 Balanced Binary Tree
    • Graph
      • Detect Cycle
  • Algorithms
    • Union Find
      • 695 Max Area of Island
      • 684 Redundant Connection
    • Binary Search
    • Topological Sorting
    • Breadth-First Search
      • 694 Number of Distinct Islands
    • Depth-First Search
    • Two Pointers
    • Sorting
    • Backtacking
    • Dynamic Programming
      • Interval DP
        • Matrix Chain Multiplication
        • Merge Stone
      • KnapSack Problem
        • 0-1 KnapSack
        • Unbounded KnapSack
      • Longest Increasing Subsequence
      • Longest Common Subsequence
    • Reservior Sampling
    • Bipartite Graph
      • Check Bipartite Graph
      • Maximal Matching - Hungarian Algorithm
    • String Pattern Matching
      • KMP Algorithm
      • Rabin Karp Algorithm
  • System Design
    • Consistent Hashing
    • Bloom Filter
    • Caching
      • LRU
      • LFU
    • Mini Twitter
    • Tiny Url
Powered by GitBook
On this page
  • 333. Largest BST Subtree
  • 1. Question
  • 2. Implementation
  • 3. Time & Space Complexity

Was this helpful?

  1. Data Structure
  2. Tree

333 Largest BST Subtree

333. Largest BST Subtree

1. Question

Given a binary tree, find the largest subtree which is a Binary Search Tree (BST), where largest means subtree with largest number of nodes in it.

Note: A subtree must include all of its descendants. Here's an example:

    10
    / \
   5  15
  / \  \ 
 1   8  7

The Largest BST Subtree in this case is the highlighted one.

The return value is the subtree's size, which is 3.

Follow up: Can you figure out ways to solve it with O(n) time complexity?

2. Implementation

(1) Post-order Traversal

思路: 在后序遍历的过程中利用validate binary search tree的思想,对每个node的值,与它的leftSubTree最大值和rightSubtree最小值比较,如果node.val 小于等于leftSubTree的最大值或者大于等于rightSubTree的最小值,或者树的size是-1,则以该node作为root构成的树不是binary search tree. 然后每个node遍历完后返回一个数组,其中数组第一个元素存储的是以该node作为树的最小值,第二个元素存储的是以该node作为树最大值,第三个元素存储的是树的size。

class Solution {
    public int largestBSTSubtree(TreeNode root) {
        int[] maxSize = new int[1];
        dfs(root, maxSize);
        return maxSize[0];
    }

    public long[] dfs(TreeNode node, int[] maxSize) {
        if (node == null) {
            return new long[] {Integer.MAX_VALUE, Integer.MIN_VALUE, 0};
        }

        long[] left = dfs(node.left, maxSize);
        long[] right = dfs(node.right, maxSize);

        if (left[2] == -1 || right[2] == -1 || node.val <= left[1] || node.val >= right[0]) {
            return new long[] {0, 0, -1};
        }

        int count = (int)(left[2] + right[2] + 1);
        maxSize[0] = Math.max(maxSize[0], count);

        return new long[] {Math.min(left[0], node.val), Math.max(right[1], node.val), count};
    }
}

3. Time & Space Complexity

Post-order Traversal: 时间复杂度: O(n), 空间复杂度: O(h)

Previous314 Binary Tree Vertical Order TraversalNext563 Binary Tree Tilt

Last updated 5 years ago

Was this helpful?