My Algorithm Summary
  • Introduction
  • Data Structure
    • Linked List
    • Stack
      • Monotone Stack
        • 42 Trapping Rain Water
        • 84 Largest Rectangle in Histogram
        • 85 Maximal Rectangle
        • 255 Verify Preorder Sequence in Binary Search Tree
        • 316 Remove Duplicate Characters
        • 402 Remove K Digits
        • 456 132 Pattern
        • 496 Next Greater Element I
        • 503 Next Greater Element II
      • 20 Valid Parentheses
      • 71 Simplify Path
      • 150 Evaluate Reverse Polish Notation
      • 155 Min Stack
      • 173 Binary Search Tree Iterator
      • 224 Basic Calculator
      • 227 Basic Calculator II
      • 232 Implement Queue using Stacks
      • 341 Flatten Nested List Iterator
      • 394 Decode String
      • 439 Ternary Expression Parser
      • 636 Exclusive Time of Functions
    • Heap
    • Trie
    • Segment Tree
    • Tree
      • 94 Binary Tree Inorder Traversal
      • 104 Maximum Depth of Binary Tree
      • 144 Binary Tree Preorder Traversal
      • 145 Binary Tree Postorder Traversal
      • 199 Binary Tree Right Side View
      • 226 Invert Binary Tree
      • 272 Closest Binary Search Tree Value II
      • 508 Most Frequent Subtree Sum
      • 513 Find Bottom Left Tree Value
      • 515 Find Largest Value in Each Tree Row
      • 617 Merge Two Binary Trees
      • 637 Average of Levels in Binary Tree
      • 653 Two Sum IV - Input is a BST
      • 654 Maximum Binary Tree
      • 669 Trim a Binary Search Tree
      • 666 Path Sum IV
      • 230 Kth Smallest Element in a BST
      • 250 Count Univalue Subtrees
      • 538 Convert BST to Greater Tree
      • 404 Sum of Left Leaves
      • 582 Kill Process
      • 112 Path Sum
      • 108 Convert Sorted Array to Binary Search Tree
      • 111 Minimum Depth of Binary Tree
      • 501 Find Mode in Binary Search Tree
      • 102 Binary Tree Level Order Traversal
      • 107 Binary Tree Level Order Traversal II
      • 103 Binary Tree Zigzag Level Order Traversal
      • 113 Path Sum II
      • 437 Path Sum III
      • 99 Recover Binary Search Tree
      • 687 Longest Univalue Path
      • 285 Inorder Successor in BST
      • 101 Symmetric Tree
      • 129 Sum Root to Leaf Numbers
      • 298 Binary Tree Longest Consecutive Sequence
      • 270 Closest Binary Search Tree Value
      • 549 Binary Tree Longest Consecutive Sequence II
      • 98 Validate Binary Search Tree
      • 652 Find Duplicate Subtrees
      • 314 Binary Tree Vertical Order Traversal
      • 333 Largest BST Subtree
      • 563 Binary Tree Tilt
      • 110 Balanced Binary Tree
    • Graph
      • Detect Cycle
  • Algorithms
    • Union Find
      • 695 Max Area of Island
      • 684 Redundant Connection
    • Binary Search
    • Topological Sorting
    • Breadth-First Search
      • 694 Number of Distinct Islands
    • Depth-First Search
    • Two Pointers
    • Sorting
    • Backtacking
    • Dynamic Programming
      • Interval DP
        • Matrix Chain Multiplication
        • Merge Stone
      • KnapSack Problem
        • 0-1 KnapSack
        • Unbounded KnapSack
      • Longest Increasing Subsequence
      • Longest Common Subsequence
    • Reservior Sampling
    • Bipartite Graph
      • Check Bipartite Graph
      • Maximal Matching - Hungarian Algorithm
    • String Pattern Matching
      • KMP Algorithm
      • Rabin Karp Algorithm
  • System Design
    • Consistent Hashing
    • Bloom Filter
    • Caching
      • LRU
      • LFU
    • Mini Twitter
    • Tiny Url
Powered by GitBook
On this page
  • 404. Sum of Left Leaves
  • 1. Question
  • 2. Implementation
  • 3. Time & Space Complexity

Was this helpful?

  1. Data Structure
  2. Tree

404 Sum of Left Leaves

404. Sum of Left Leaves

1. Question

Find the sum of all left leaves in a given binary tree.

Example:

    3
   / \
  9  20
    /  \
   15   7

There are two left leaves in the binary tree, with values 9 and 15respectively. Return 24.

2. Implementation

(1) BFS

思路:这里要注意left leaves的意思,首先必须一个node必须是另一个node的left children,其次这个node必然不是root,且它没有任何children才算leaves。所以在BFS的过程中,我们要检测curNode.left是否为空,如果不是的话再看curNode.left有没有任何children,如果没有则curNode.left是一个合格的left leave我们加上它的value

class Solution {
    public int sumOfLeftLeaves(TreeNode root) {
        if (root == null) {
            return 0;
        }

        Queue<TreeNode> queue = new LinkedList<>();
        queue.add(root);

        int sum = 0;

        while (!queue.isEmpty()) {
            int size = queue.size();

            for (int i = 0; i < size; i++) {
                TreeNode curNode = queue.remove();

                if (curNode.left != null) {
                    if (curNode.left.left == null && curNode.left.right == null) {
                        sum += curNode.left.val;
                    }
                }

                if (curNode.left != null) {
                    queue.add(curNode.left);
                }

                if (curNode.right != null) {
                    queue.add(curNode.right);
                }
            }
        }
        return sum;
    }
}

(2) DFS:

思路:和BFS的思路差不多

class Solution {
    public int sumOfLeftLeaves(TreeNode root) {
        int[] sum = new int[1];
        getSumOfLeftLeaves(root, sum);
        return sum[0];
    }

    public void getSumOfLeftLeaves(TreeNode node, int[] sum) {
        if (node == null) {
            return;
        }

        if (node.left != null) {
            if (node.left.left == null && node.left.right == null) {
                sum[0] += node.left.val;
            }
            else {
                getSumOfLeftLeaves(node.left, sum);
            }
        }
        getSumOfLeftLeaves(node.right, sum);
    }
}

3. Time & Space Complexity

BFS: 时间复杂度O(n), 空间复杂度:O(w), w为树的一层中拥有最多node的个数

DFS: 时间复杂度O(h), h是树的高度,空间复杂度: O(h)

Previous538 Convert BST to Greater TreeNext582 Kill Process

Last updated 5 years ago

Was this helpful?