My Algorithm Summary
  • Introduction
  • Data Structure
    • Linked List
    • Stack
      • Monotone Stack
        • 42 Trapping Rain Water
        • 84 Largest Rectangle in Histogram
        • 85 Maximal Rectangle
        • 255 Verify Preorder Sequence in Binary Search Tree
        • 316 Remove Duplicate Characters
        • 402 Remove K Digits
        • 456 132 Pattern
        • 496 Next Greater Element I
        • 503 Next Greater Element II
      • 20 Valid Parentheses
      • 71 Simplify Path
      • 150 Evaluate Reverse Polish Notation
      • 155 Min Stack
      • 173 Binary Search Tree Iterator
      • 224 Basic Calculator
      • 227 Basic Calculator II
      • 232 Implement Queue using Stacks
      • 341 Flatten Nested List Iterator
      • 394 Decode String
      • 439 Ternary Expression Parser
      • 636 Exclusive Time of Functions
    • Heap
    • Trie
    • Segment Tree
    • Tree
      • 94 Binary Tree Inorder Traversal
      • 104 Maximum Depth of Binary Tree
      • 144 Binary Tree Preorder Traversal
      • 145 Binary Tree Postorder Traversal
      • 199 Binary Tree Right Side View
      • 226 Invert Binary Tree
      • 272 Closest Binary Search Tree Value II
      • 508 Most Frequent Subtree Sum
      • 513 Find Bottom Left Tree Value
      • 515 Find Largest Value in Each Tree Row
      • 617 Merge Two Binary Trees
      • 637 Average of Levels in Binary Tree
      • 653 Two Sum IV - Input is a BST
      • 654 Maximum Binary Tree
      • 669 Trim a Binary Search Tree
      • 666 Path Sum IV
      • 230 Kth Smallest Element in a BST
      • 250 Count Univalue Subtrees
      • 538 Convert BST to Greater Tree
      • 404 Sum of Left Leaves
      • 582 Kill Process
      • 112 Path Sum
      • 108 Convert Sorted Array to Binary Search Tree
      • 111 Minimum Depth of Binary Tree
      • 501 Find Mode in Binary Search Tree
      • 102 Binary Tree Level Order Traversal
      • 107 Binary Tree Level Order Traversal II
      • 103 Binary Tree Zigzag Level Order Traversal
      • 113 Path Sum II
      • 437 Path Sum III
      • 99 Recover Binary Search Tree
      • 687 Longest Univalue Path
      • 285 Inorder Successor in BST
      • 101 Symmetric Tree
      • 129 Sum Root to Leaf Numbers
      • 298 Binary Tree Longest Consecutive Sequence
      • 270 Closest Binary Search Tree Value
      • 549 Binary Tree Longest Consecutive Sequence II
      • 98 Validate Binary Search Tree
      • 652 Find Duplicate Subtrees
      • 314 Binary Tree Vertical Order Traversal
      • 333 Largest BST Subtree
      • 563 Binary Tree Tilt
      • 110 Balanced Binary Tree
    • Graph
      • Detect Cycle
  • Algorithms
    • Union Find
      • 695 Max Area of Island
      • 684 Redundant Connection
    • Binary Search
    • Topological Sorting
    • Breadth-First Search
      • 694 Number of Distinct Islands
    • Depth-First Search
    • Two Pointers
    • Sorting
    • Backtacking
    • Dynamic Programming
      • Interval DP
        • Matrix Chain Multiplication
        • Merge Stone
      • KnapSack Problem
        • 0-1 KnapSack
        • Unbounded KnapSack
      • Longest Increasing Subsequence
      • Longest Common Subsequence
    • Reservior Sampling
    • Bipartite Graph
      • Check Bipartite Graph
      • Maximal Matching - Hungarian Algorithm
    • String Pattern Matching
      • KMP Algorithm
      • Rabin Karp Algorithm
  • System Design
    • Consistent Hashing
    • Bloom Filter
    • Caching
      • LRU
      • LFU
    • Mini Twitter
    • Tiny Url
Powered by GitBook
On this page
  • 684 Redundant Connection
  • 1. 题目:
  • 2. 思路
  • 3. Implementation

Was this helpful?

  1. Algorithms
  2. Union Find

684 Redundant Connection

Previous695 Max Area of IslandNextBinary Search

Last updated 5 years ago

Was this helpful?

684

1. 题目:

In this problem, a tree is an undirected graph that is connected and has no cycles.

The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

The resulting graph is given as a 2D-array ofedges. Each element ofedgesis a pair[u, v]withu < v, that represents an undirected edge connecting nodesuandv.

Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge[u, v]should be in the same format, withu < v.

Example 1:

Input:
 [[1,2], [1,3], [2,3]]

Output:
 [2,3]

Explanation:
 The given undirected graph will be like this:
  1
 / \
2 - 3

Example 2:

Input:
 [[1,2], [2,3], [3,4], [1,4], [1,5]]

Output:
 [1,4]

Explanation:
The given undirected graph will be like this:
5 - 1 - 2
    |   |
    4 - 3

Note:

The size of the input 2D-array will be between 3 and 1000.

Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.

2. 思路

利用Union-Find, 一旦发现有已经相连的Component, 则该边是redundant

3. Implementation

class Solution {
    public int[] findRedundantConnection(int[][] edges) {
        int n = edges.length;
        UnionFind uf = new UnionFind(n);

        for (int[] edge : edges) {
            if (!uf.union(edge[0], edge[1])) {
                return new int[] {edge[0], edge[1]};
            }
        }

        return new int[0];
    }

    class UnionFind {
        int[] sets;
        int[] size;
        int count;

        public UnionFind(int n) {
            sets = new int[n + 1];
            size = new int[n + 1];
            count = n;

            for (int i = 0; i <= n; i++) {
                sets[i] = i;
                size[i] = 1;
            }
        }

        public int find(int node) {
            while (node != sets[node]) {
                node = sets[node];
            }
            return node;
        }

        public boolean union(int i, int j) {
            int node1 = find(i);
            int node2 = find(j);

            if (node1 == node2) {
                return false;
            }

            if (size[node1] < size[node2]) {
                sets[node1] = node2;
                size[node2] += size[node1];
            }
            else {
                sets[node2] = node1;
                size[node1] += size[node2];
            }

            --count;
            return true;
        }
    }
}
Redundant Connection