Sorting
Sorting
1. Count Sort
Time: O(n), Space: O(n)
public static void countSort(int[] nums) {
int max = Integer.MIN_VALUE, min = Integer.MAX_VALUE;
for (int num : nums) {
max = Math.max(max, num);
min = Math.min(min, num);
}
int[] count = new int[max - min + 1];
for (int num : nums) {
++count[num - min];
}
int index = 0;
for (int i = min; i <= max; i++) {
while (count[i - min] > 0) {
nums[index] = i;
++index;
--count[i - min];
}
}
}
2. Bucket Sort
Time: O(n + k), Space: O(n)
// To be continued
3. Quick Sort
Time: O(nlogn), Space: O(logn)
public static void quickSort(int[] nums) {
recQuickSort(nums, 0, nums.length - 1);
}
public static void recQuickSort(int[] nums, int start, int end) {
if (start >= end) {
return;
}
int pivot = partition(nums, start, end);
recQuickSort(nums, start, pivot - 1);
recQuickSort(nums, pivot + 1, end );
}
public static int partition(int[] nums, int start, int end) {
// Use the middle element as pivot
int pivot = (start + end) >> 1;
// Put the pivot to the end
swap(nums, pivot, end);
// Put element smaller than the pivot to the first half of array
for (int i = start; i < end; i++) {
if (nums[i] < nums[end]) {
swap(nums, i, start);
++start;
}
}
// Put the pivot back to position it should be in after partition
swap(nums, start, end);
return start;
}
public static void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
Quick Select (Find the Kth Largest/Smallest Number)
public int quickSelect(int[] nums, int k, int start, int end) {
int pivot = partition(nums, start, end);
if (pivot < k) {
return quickSelect(nums, k, pivot + 1, end);
}
else if (pivot > k) {
return quickSelect(nums, k, start, pivot);
}
else {
return nums[pivot];
}
}
public int partition(int[] nums, int start, int end) {
int mid = (start + end) >> 1;
swap(nums, mid, end);
for (int i = start; i < end; i++) {
// To get the Kth largest number, put element larger than the pivot to the left
if (nums[i] > nums[end]) {
swap(nums, start, i);
++start;
}
}
swap(nums, start, end);
return start;
}
public void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
4. Merge Sort
Time: O(nlogn), Space: O(n)
public void mergeSort(int[] nums) {
if (nums == null || nums.length == 0) {
return;
}
mergeSort(nums, 0, nums.length - 1);
}
public void mergeSort(int[] nums, int start, int end) {
if (start >= end) {
return;
}
int mid = (start + end) / 2;
mergeSort(nums, start, mid);
mergeSort(nums, mid + 1, end);
merge(nums, start, mid, end);
}
public void merge(int[] nums, int start, int mid, int end) {
int[] temp = new int[end - start + 1];
int i = start;
int j = mid + 1;
int k = 0;
while (i <= mid || j <= end) {
if (i > mid || (j <= end && nums[j] < nums[i])) {
temp[k++] = nums[j++];
}
else {
temp[k++] = nums[i++];
}
}
for (int index = 0; index < k; index++) {
nums[start + index] = temp[index];
}
}
5. Questions
Merge Sort: Reverse Pairs,
Quick Sort: Kth Largest Element in an Array, Wiggle Sort II
Count Sort: Sort Colors, H-Index
Bucket Sort: Sort Characters By Frequency, Top K Frequent Elements, Maximum Gap
Last updated