My Algorithm Summary
  • Introduction
  • Data Structure
    • Linked List
    • Stack
      • Monotone Stack
        • 42 Trapping Rain Water
        • 84 Largest Rectangle in Histogram
        • 85 Maximal Rectangle
        • 255 Verify Preorder Sequence in Binary Search Tree
        • 316 Remove Duplicate Characters
        • 402 Remove K Digits
        • 456 132 Pattern
        • 496 Next Greater Element I
        • 503 Next Greater Element II
      • 20 Valid Parentheses
      • 71 Simplify Path
      • 150 Evaluate Reverse Polish Notation
      • 155 Min Stack
      • 173 Binary Search Tree Iterator
      • 224 Basic Calculator
      • 227 Basic Calculator II
      • 232 Implement Queue using Stacks
      • 341 Flatten Nested List Iterator
      • 394 Decode String
      • 439 Ternary Expression Parser
      • 636 Exclusive Time of Functions
    • Heap
    • Trie
    • Segment Tree
    • Tree
      • 94 Binary Tree Inorder Traversal
      • 104 Maximum Depth of Binary Tree
      • 144 Binary Tree Preorder Traversal
      • 145 Binary Tree Postorder Traversal
      • 199 Binary Tree Right Side View
      • 226 Invert Binary Tree
      • 272 Closest Binary Search Tree Value II
      • 508 Most Frequent Subtree Sum
      • 513 Find Bottom Left Tree Value
      • 515 Find Largest Value in Each Tree Row
      • 617 Merge Two Binary Trees
      • 637 Average of Levels in Binary Tree
      • 653 Two Sum IV - Input is a BST
      • 654 Maximum Binary Tree
      • 669 Trim a Binary Search Tree
      • 666 Path Sum IV
      • 230 Kth Smallest Element in a BST
      • 250 Count Univalue Subtrees
      • 538 Convert BST to Greater Tree
      • 404 Sum of Left Leaves
      • 582 Kill Process
      • 112 Path Sum
      • 108 Convert Sorted Array to Binary Search Tree
      • 111 Minimum Depth of Binary Tree
      • 501 Find Mode in Binary Search Tree
      • 102 Binary Tree Level Order Traversal
      • 107 Binary Tree Level Order Traversal II
      • 103 Binary Tree Zigzag Level Order Traversal
      • 113 Path Sum II
      • 437 Path Sum III
      • 99 Recover Binary Search Tree
      • 687 Longest Univalue Path
      • 285 Inorder Successor in BST
      • 101 Symmetric Tree
      • 129 Sum Root to Leaf Numbers
      • 298 Binary Tree Longest Consecutive Sequence
      • 270 Closest Binary Search Tree Value
      • 549 Binary Tree Longest Consecutive Sequence II
      • 98 Validate Binary Search Tree
      • 652 Find Duplicate Subtrees
      • 314 Binary Tree Vertical Order Traversal
      • 333 Largest BST Subtree
      • 563 Binary Tree Tilt
      • 110 Balanced Binary Tree
    • Graph
      • Detect Cycle
  • Algorithms
    • Union Find
      • 695 Max Area of Island
      • 684 Redundant Connection
    • Binary Search
    • Topological Sorting
    • Breadth-First Search
      • 694 Number of Distinct Islands
    • Depth-First Search
    • Two Pointers
    • Sorting
    • Backtacking
    • Dynamic Programming
      • Interval DP
        • Matrix Chain Multiplication
        • Merge Stone
      • KnapSack Problem
        • 0-1 KnapSack
        • Unbounded KnapSack
      • Longest Increasing Subsequence
      • Longest Common Subsequence
    • Reservior Sampling
    • Bipartite Graph
      • Check Bipartite Graph
      • Maximal Matching - Hungarian Algorithm
    • String Pattern Matching
      • KMP Algorithm
      • Rabin Karp Algorithm
  • System Design
    • Consistent Hashing
    • Bloom Filter
    • Caching
      • LRU
      • LFU
    • Mini Twitter
    • Tiny Url
Powered by GitBook
On this page
  • Topological Sorting
  • 1. Basics
  • (1) Topological Sorting By Breath First Search (Kahn's Algorithm)
  • (2) Topological Sorting By Depth First Search
  • 2. Thoughts
  • 3. Interview Questions

Was this helpful?

  1. Algorithms

Topological Sorting

Topological Sorting

1. Basics

(1) Topological Sorting By Breath First Search (Kahn's Algorithm)

Idea:

  1. Create adjacent list for the graph

  2. Calculate the inDegree for each node

  3. Start with node with 0 inDegree and do BFS for its neighbor

  4. Everytime we visit a node, we decrement the inDegree of it by 1, if the inDegree turns to 0, we add the node to queue

import java.util.*;

   public static void topologicalSortByBFS(int nodes, int[][] edges) {
        List<List<Integer>> adjList = new ArrayList<>();
        List<Integer> topologicalSortOrder = new ArrayList<>();

        for (int i = 0; i < nodes; i++) {
            adjList.add(new ArrayList<>());
        }

        int[] inDegree = new int[nodes];

        for (int[] edge : edges) {
            ++inDegree[edge[1]];
            adjList.get(edge[0]).add(edge[1]);
        }

        Queue<Integer> queue = new LinkedList<>();

        for (int i = 0; i < inDegree.length; i++) {
            if (inDegree[i] == 0) {
                queue.add(i);
            }
        }

        int count = 0;
        while (!queue.isEmpty()) {
            int curNode = queue.remove();

            ++count;
            topologicalSortOrder.add(curNode);

            for (int nextNode : adjList.get(curNode)) {
                if (--inDegree[nextNode] == 0) {
                    queue.add(nextNode);
                }
            }
        }

        if (count != nodes) {
            System.out.println("Cycle is detected, can not implement topological sort");
        }
        else {
            printTopologicalSortOrder(topologicalSortOrder);
        }
    }

    public static void printTopologicalSortOrder(List<Integer> list) {
        System.out.println("Topological Sort: ");
        for (int order : list) {
            System.out.print(order + " ");
        }
    }

    public static void main(String[] args) {
       int nodes = 6;
       int[][] edges = {{5, 2}, {5, 0}, {4, 0}, {4, 1}, {2, 3}, {3, 1}};
       topologicalSortByBFS(nodes, edges);
    }

(2) Topological Sorting By Depth First Search

ideas:

  1. Create adjacent list for the graph

  2. Maintain two boolean array visited and visiting, where visited mean a node has been visited from a path in dfs, while visiting means a node is being visited in the dfs

  3. If the visiting value for a node is true, this means a loop is found

  4. If the visited value for a node is true, this means we have visited this node, we can skip it

import java.util.*;

   public static void topologicalSortByDFS(int nodes, int[][] edges) {
        List<List<Integer>> adjList = new ArrayList<>();
        List<Integer> topologicalSortOrder = new ArrayList<>();

        for (int i = 0; i < nodes; i++) {
            adjList.add(new ArrayList<>());
        }

        for (int[] edge : edges) {
            adjList.get(edge[0]).add(edge[1]);
        }

        boolean[] visited = new boolean[nodes];
        boolean[] visiting = new boolean[nodes];

        for (int i = 0; i < nodes; i++) {
            if (!dfs(i, visited, visiting, adjList, topologicalSortOrder)) {
                System.out.println("Cycle is detected, can not implement topological sort");
                return;
            }
        }

        printTopologicalSortOrder(topologicalSortOrder);
    }

    public static boolean dfs(int curNode, boolean[] visited, boolean[] visiting, List<List<Integer>> adjList, List<Integer> topologicalSortOrder) {
        // if curNode has been visited (added to the result), we skip it
        if (visited[curNode]) {
            return true;
        }

        // Found loop in the current DFS
        if (visiting[curNode]) {
            return false;
        }

        visiting[curNode] = true;
        for (int nextNode : adjList.get(curNode)) {
            if (!dfs(nextNode, visited, visiting, adjList, topologicalSortOrder)) {
                return false;
            }
        }
        visited[curNode] = true;
        topologicalSortOrder.add(0, curNode);
        return true;
    }

    public static void printTopologicalSortOrder(List<Integer> list) {
        System.out.println("Topological Sort: ");
        for (int order : list) {
            System.out.print(order + " ");
        }
    }

    public static void main(String[] args) {
        int nodes = 6;
        int[][] edges = {{5, 2}, {5, 0}, {4, 0}, {4, 1}, {2, 3}, {3, 1}};
        topologicalSortByDFS(nodes, edges);
    }

2. Thoughts

  1. Q:What if the input is not integer, but rather character or string, what data structure should we use to build up adjacent list and inDegree?

    A: Use hashmap, for example, if the input is character, then Adjacent list: Map<Character, Set<Character>>, inDegree: Map<Character, Integer>

  2. Q: Time Complexity for Topological Sort:

    A: O(n + e), where n is the number of nodes and e is the number of edges

3. Interview Questions

PreviousBinary SearchNextBreadth-First Search

Last updated 5 years ago

Was this helpful?

Course Schedule
Course Schedule II
Alien Dictionary
Sequence Reconstruction