My Algorithm Summary
  • Introduction
  • Data Structure
    • Linked List
    • Stack
      • Monotone Stack
        • 42 Trapping Rain Water
        • 84 Largest Rectangle in Histogram
        • 85 Maximal Rectangle
        • 255 Verify Preorder Sequence in Binary Search Tree
        • 316 Remove Duplicate Characters
        • 402 Remove K Digits
        • 456 132 Pattern
        • 496 Next Greater Element I
        • 503 Next Greater Element II
      • 20 Valid Parentheses
      • 71 Simplify Path
      • 150 Evaluate Reverse Polish Notation
      • 155 Min Stack
      • 173 Binary Search Tree Iterator
      • 224 Basic Calculator
      • 227 Basic Calculator II
      • 232 Implement Queue using Stacks
      • 341 Flatten Nested List Iterator
      • 394 Decode String
      • 439 Ternary Expression Parser
      • 636 Exclusive Time of Functions
    • Heap
    • Trie
    • Segment Tree
    • Tree
      • 94 Binary Tree Inorder Traversal
      • 104 Maximum Depth of Binary Tree
      • 144 Binary Tree Preorder Traversal
      • 145 Binary Tree Postorder Traversal
      • 199 Binary Tree Right Side View
      • 226 Invert Binary Tree
      • 272 Closest Binary Search Tree Value II
      • 508 Most Frequent Subtree Sum
      • 513 Find Bottom Left Tree Value
      • 515 Find Largest Value in Each Tree Row
      • 617 Merge Two Binary Trees
      • 637 Average of Levels in Binary Tree
      • 653 Two Sum IV - Input is a BST
      • 654 Maximum Binary Tree
      • 669 Trim a Binary Search Tree
      • 666 Path Sum IV
      • 230 Kth Smallest Element in a BST
      • 250 Count Univalue Subtrees
      • 538 Convert BST to Greater Tree
      • 404 Sum of Left Leaves
      • 582 Kill Process
      • 112 Path Sum
      • 108 Convert Sorted Array to Binary Search Tree
      • 111 Minimum Depth of Binary Tree
      • 501 Find Mode in Binary Search Tree
      • 102 Binary Tree Level Order Traversal
      • 107 Binary Tree Level Order Traversal II
      • 103 Binary Tree Zigzag Level Order Traversal
      • 113 Path Sum II
      • 437 Path Sum III
      • 99 Recover Binary Search Tree
      • 687 Longest Univalue Path
      • 285 Inorder Successor in BST
      • 101 Symmetric Tree
      • 129 Sum Root to Leaf Numbers
      • 298 Binary Tree Longest Consecutive Sequence
      • 270 Closest Binary Search Tree Value
      • 549 Binary Tree Longest Consecutive Sequence II
      • 98 Validate Binary Search Tree
      • 652 Find Duplicate Subtrees
      • 314 Binary Tree Vertical Order Traversal
      • 333 Largest BST Subtree
      • 563 Binary Tree Tilt
      • 110 Balanced Binary Tree
    • Graph
      • Detect Cycle
  • Algorithms
    • Union Find
      • 695 Max Area of Island
      • 684 Redundant Connection
    • Binary Search
    • Topological Sorting
    • Breadth-First Search
      • 694 Number of Distinct Islands
    • Depth-First Search
    • Two Pointers
    • Sorting
    • Backtacking
    • Dynamic Programming
      • Interval DP
        • Matrix Chain Multiplication
        • Merge Stone
      • KnapSack Problem
        • 0-1 KnapSack
        • Unbounded KnapSack
      • Longest Increasing Subsequence
      • Longest Common Subsequence
    • Reservior Sampling
    • Bipartite Graph
      • Check Bipartite Graph
      • Maximal Matching - Hungarian Algorithm
    • String Pattern Matching
      • KMP Algorithm
      • Rabin Karp Algorithm
  • System Design
    • Consistent Hashing
    • Bloom Filter
    • Caching
      • LRU
      • LFU
    • Mini Twitter
    • Tiny Url
Powered by GitBook
On this page
  • 230. Kth Smallest Element in a BST
  • 1. Question
  • 2. Implementation
  • 3. Time & Space Complexity

Was this helpful?

  1. Data Structure
  2. Tree

230 Kth Smallest Element in a BST

230. Kth Smallest Element in a BST

1. Question

Given a binary search tree, write a functionkthSmallestto find thekth smallest element in it.

Note: You may assume k is always valid, 1 ≤ k ≤ BST's total elements.

Follow up: What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kth Smallest routine?

Hint:

Try to utilize the property of a BST. What if you could modify the BST node's structure? The optimal runtime complexity is O(height of BST).

2. Implementation

(1) Inorder traversal

思路:直接中序遍历找出第K小的node

class Solution {
    public int kthSmallest(TreeNode root, int k) {
        int count = 1;
        Stack<TreeNode> stack = new Stack<>();
        TreeNode curNode = root;

        while (curNode != null || !stack.isEmpty()) {
            if (curNode != null) {
                stack.push(curNode);
                curNode = curNode.left;
            }
            else {
                curNode = stack.pop();
                if (count == k) {
                    return curNode.val;
                }
                ++count;
                curNode = curNode.right;
            }
        }
        return -1;
    }
}

(2) Binary Search

思路:利用bst的二分特性,计算一个node在树里有多少个nodes的值比它小,如果该值等于k + 1, 说明当前的node是第k小的node,如果该值小于k + 1, 则第k小的node会在当前node的左边,否则在右边

public int kthSmallest(TreeNode root, int k) {
        int total = count(root.left);

        if (k <= total) {
            return kthSmallest(root.left, k);
        }
        else if (k > total + 1) {
            return kthSmallest(root.right, k - total - 1);
        }
        else {
            return root.val;
        }
    }

    public int count(TreeNode node) {
        if (node == null) {
            return 0;
        }
        return 1 + count(node.left) + count(node.right);
    }

(3) Follow up

如果我们频繁的操作该树,并且频繁的调用kth函数,有什么优化方法使时间复杂度降低至O(h)?h是树的高度。根据提示,我们可以在TreeNode中加入一个rank成员,这个变量记录的是该节点的左子树中节点的个数,其实就是有多少个节点比该节点小。这样我们就可以用二叉树搜索的方法来解决这个问题了。这个添加rank的操作可以在建树的时候一起完成。

3. Time & Space Complexity

Inorder Traversal: 时间复杂度: O(n), 空间复杂度: O(h), h为树的高度

Binary Search: 时间复杂度: O(h), 空间复杂度:O(h), count()这个function是递归地call,call stack最多可达树的高度

Previous666 Path Sum IVNext250 Count Univalue Subtrees

Last updated 5 years ago

Was this helpful?