934 Shortest Bridge
934. Shortest Bridge
1. Question
In a given 2D binary arrayA
, there are two islands. (An island is a 4-directionally connected group of 1
s not connected to any other 1s.)
Now, we may change0
s to1
s so as to connect the two islands together to form 1 island.
Return the smallest number of0
s that must be flipped. (It is guaranteed that the answer is at least 1.)
Example 1:
Input: [[0,1],[1,0]]
Output: 1
Example 2:
Input: [[0,1,0],[0,0,0],[0,0,1]]
Output: 2
Example 3:
Input: [[1,1,1,1,1],[1,0,0,0,1],[1,0,1,0,1],[1,0,0,0,1],[1,1,1,1,1]]
Output: 1
Note:
1 <= A.length = A[0].length <= 100
A[i][j] == 0
orA[i][j] == 1
2. Implementation
(1) DFS + BFS
思路:
先用DFS找到一个island
然后用BFS将找到的island expand,直至到达另一个island
class Solution {
public int shortestBridge(int[][] A) {
int m = A.length, n = A[0].length;
Queue<int[]> queue = new LinkedList();
boolean[][] visited = new boolean[m][n];
int[][] directions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
boolean found = false;
for (int i = 0; i < m && !found; i++) {
for (int j = 0; j < n && !found; j++) {
if (A[i][j] == 1) {
findIslandByDFS(i, j, queue, visited, directions, A);
found = true;
break;
}
}
}
int step = 0;
while (!queue.isEmpty()) {
int size = queue.size();
while (size-- > 0) {
int[] cur = queue.remove();
for (int[] direction : directions) {
int nextRow = cur[0] + direction[0];
int nextCol = cur[1] + direction[1];
if (nextRow >= 0 && nextCol >= 0 && nextRow < m && nextCol < n && !visited[nextRow][nextCol]) {
if (A[nextRow][nextCol] == 1) {
return step;
}
queue.add(new int[] {nextRow, nextCol});
visited[nextRow][nextCol] = true;
}
}
}
++step;
}
return step;
}
public void findIslandByDFS(int row, int col, Queue<int[]> queue, boolean[][] visited, int[][] directions, int[][] A) {
if (row < 0 || col < 0 || row >= A.length || col >= A[0].length || A[row][col] == 0 || visited[row][col]) {
return;
}
visited[row][col] = true;
queue.add(new int[] {row, col});
for (int[] direction : directions) {
int nextRow = row + direction[0];
int nextCol = col + direction[1];
findIslandByDFS(nextRow, nextCol, queue, visited, directions, A);
}
}
}
3. Time & Space Complexity
时间复杂度O(mn), 空间复杂度O(mn)
Last updated
Was this helpful?