296.
1. Question
A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using , where distance(p1, p2) =|p2.x - p1.x| + |p2.y - p1.y|
.
For example, given three people living at(0,0)
,(0,4)
, and(2,2)
:
Copy 1 - 0 - 0 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0
The point(0,2)
is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6
2. Implementation
(1) Sort + Two Pointers
思路: 和#462的思路一样, 相遇的点在哪不影响最后的距离
Copy class Solution {
public int minTotalDistance(int[][] grid) {
List<Integer> rows = new ArrayList<>();
List<Integer> cols = new ArrayList<>();
int m = grid.length, n = grid[0].length;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == 1) {
rows.add(i);
cols.add(j);
}
}
}
return getDistance(rows, false) + getDistance(cols, true);
}
public int getDistance(List<Integer> list, boolean isCol) {
// rows这个list本身已经sorted,所以只对cols排序
if (isCol) {
Collections.sort(list);
}
int start = 0, end = list.size() - 1;
int dist = 0;
while (start < end) {
dist += list.get(end) - list.get(start);
++start;
--end;
}
return dist;
}
}
3. Time & Space Complexity
Sort + Two Pointers: 时间复杂度O(mn + mlogm + nlogn), 空间复杂度O(Max(m,n))