188 Best Time to Buy and Sell Stock IV

1. Question

Say you have an array for which theithelement is the price of a given stock on dayi.

Design an algorithm to find the maximum profit. You may complete at mostktransactions.

Note: You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

Example 1:

Input:
[2,4,1], k = 2

Output:
2

Explanation:
Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2.

Example 2:

Input:
[3,2,6,5,0,3], k = 2

Output:
 7

Explanation:
Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4.
Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.

2. Implementation

(1) DP

思路: dp[i][j] 表示在第i次交易和第j天交易时所能得到的最大利润,通过分析可知,dp[i][j]的值有两种可能性:

  • 在第j天不进行交易, 此时最大利润表示为dp[i][j - 1]

  • 在第j天进行交易,假设上一次交易的时间是第m天 (m = 0, 1, ...., j - 1),则此时最大利润为 prices[j] - prices[m] + dp[i - 1][m]

所以要找出dp[i][j]的最大利润,我们只要找到在第m天里,使得我们能在第j天进行第i次交易时获得最大的利润profit,然后dp[i][j]等于profit和dp[i][j - 1]两者之间最大即可。最后返回的结果则是dp[k][prices.length - 1]

class Solution {
    public int maxProfit(int k, int[] prices) {
        if (prices == null || prices.length == 0) {
            return 0;
        }

        if (k >= prices.length / 2) {
            return maxProfitWithUnlimitedTransactions(prices);
        }

        int[][] dp = new int[k + 1][prices.length];

        for (int i = 1; i <= k; i++) {
            for (int j = 1; j < prices.length; j++) {
                int profit = 0;
                for (int m = j; m >= 0; m--) {
                    profit = Math.max(profit, prices[j] - prices[m] + dp[i - 1][m]);
                }
                dp[i][j] = Math.max(profit, dp[i][j - 1]);
            }
        }
        return dp[k][prices.length - 1];
    }

    public int maxProfitWithUnlimitedTransactions(int[] prices) {
        int curMax = 0;
        int res = 0;

        for (int i = 1; i < prices.length; i++) {
            curMax = prices[i] > prices[i - 1] ? curMax + prices[i] - prices[i - 1] : curMax;
            res = Math.max(res, curMax);
        }
        return res;
    }
}

(2) DP优化

思路: 在第一种解法中, 我们要用两个for loop找到当我们在j天交易时可以获得最大利润,其中最里层的for loop是枚举上一次交易的第m(0 <= m < j)天,以获得price[j] - prices[m] + dp[i - 1][m]的最大值。其实这一步是可以合成一个for loop的,即只需要找到dp[i - 1][m] - prices[m]的最大值,记为maxDiff,那么我们每次在第j天交易时,只需要加上这个maxDiff就一定可以获得最大利润。

class Solution {
    public int maxProfit(int k, int[] prices) {
        if (prices == null || prices.length == 0) {
            return 0;
        }

        if (k >= prices.length / 2) {
            return maxProfitWithUnlimitedTransactions(prices);
        }

        int[][] dp = new int[k + 1][prices.length];

        for (int i = 1; i <= k; i++) {
            int maxDiff = -prices[0];
            for (int j = 1; j < prices.length; j++) {
                dp[i][j] = Math.max(dp[i][j - 1], prices[j] + maxDiff);
                maxDiff = Math.max(maxDiff, dp[i - 1][j] - prices[j]);
            }
        }
        return dp[k][prices.length - 1];
    }

    public int maxProfitWithUnlimitedTransactions(int[] prices) {
        int curMax = 0;
        int res = 0;

        for (int i = 1; i < prices.length; i++) {
            curMax = prices[i] > prices[i - 1] ? curMax + prices[i] - prices[i - 1] : curMax;
            res = Math.max(res, curMax);
        }
        return res;
    }
}

3. Time & Space Complexity

DP: 时间复杂度O(k * n ^ 2), k是交易的次数, n是天数。 空间复杂度O(nk)

DP优化: 时间复杂度O(nk), 空间复杂度O(nk)

Last updated

Was this helpful?