221.
1. Question
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area.
For example, given the following matrix:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 4.
2. Implementation
(1) DP
思路: 这类在board上的dp题基本都万变不离其中, (i,j)的状态基本受到其周围的cell的影响。这题里,我们定义dp[i][j]为以(i,j)作为正方形的右下角,该正方形的最长长度。显然要构成正方形必须要满足两个条件:
(1) (i, j)上的数字是1
(2) 由于我们以(i, j)作为正方形的右下角,所以(i - 1, j), (i, j - 1), (i - 1, j- 1)这三点也必须要构成正方形, 正方形的长度取决于这三个点的最小值
所以状态转移方程为 dp[i][j] = 1 + min(dp[i -1][j], dp[i][j - 1], dp[i - 1][j - 1]). 要求出最大正方形,只要找出最大的正方形边,然后计算面积即可
class Solution {
public int maximalSquare(char[][] matrix) {
if (matrix == null || matrix.length == 0) {
return 0;
}
int m = matrix.length, n = matrix[0].length;
// dp[i][j] means the edge of square which is at bottom right at (i, j)
int[][] dp = new int[m][n];
int maxSize = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i == 0 || j == 0) {
dp[i][j] = matrix[i][j] - '0';
}
else if (matrix[i][j] == '1') {
dp[i][j] = 1 + Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1]));
}
else {
dp[i][j] = 0;
}
maxSize = Math.max(maxSize, dp[i][j]);
}
}
return maxSize * maxSize;
}
}
3. Time & Space Complexity
DP: 时间复杂度O(mn), 空间复杂度O(mn)