Given a 2D matrixmatrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1,col1) and lower right corner (row2,col2).
Copy Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]
sumRegion(2, 1, 4, 3) -> 8
update(3, 2, 2)
sumRegion(2, 1, 4, 3) -> 10
Copy class NumMatrix {
BIT bit;
int m;
int n;
int [][] nums;
public NumMatrix ( int [][] matrix) {
if (matrix == null || matrix . length == 0 ) {
return ;
}
this . nums = matrix;
m = matrix . length ;
n = matrix[ 0 ] . length ;
bit = new BIT(m , n) ;
for ( int i = 0 ; i < m; i ++ ) {
for ( int j = 0 ; j < n; j ++ ) {
bit . update (i , j , matrix[i][j]);
}
}
}
public void update ( int row , int col , int val) {
int diff = val - nums[row][col];
nums[row][col] = val;
bit . update (row , col , diff);
}
public int sumRegion ( int row1 , int col1 , int row2 , int col2) {
return bit.query(row2 + 1, col2 + 1) - bit.query(row2 + 1, col1) - bit.query(row1, col2 + 1) + bit.query(row1, col1);
}
}
class BIT {
int [][] sums;
public BIT ( int m , int n) {
sums = new int [m + 1 ][n + 1 ];
}
public void update ( int row , int col , int val) {
for ( int i = row + 1 ; i < sums . length ; i += (i & - i)) {
for ( int j = col + 1 ; j < sums[ 0 ] . length ; j += (j & - j)) {
sums[i][j] += val;
}
}
}
public int query ( int row , int col) {
int sum = 0 ;
for ( int i = row; i > 0 ; i -= (i & - i)) {
for ( int j = col; j > 0 ; j -= (j & - j)) {
sum += sums[i][j];
}
}
return sum;
}
}
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix obj = new NumMatrix(matrix);
* obj.update(row,col,val);
* int param_2 = obj.sumRegion(row1,col1,row2,col2);
*/
3. Time & Space Complexity