801 Minimum Swaps To Make Sequences Increasing

1. Question

We have two integer sequencesAandBof the same non-zero length.

We are allowed to swap elementsA[i]andB[i]. Note that both elements are in the same index position in their respective sequences.

At the end of some number of swaps,AandBare both strictly increasing. (A sequence is_strictly increasing_if and only ifA[0] < A[1] < A[2] < ... < A[A.length - 1].)

Given A and B, return the minimum number of swaps to make both sequences strictly increasing. It is guaranteed that the given input always makes it possible.

Example:
Input: A = [1,3,5,4], B = [1,2,3,7]

Output: 1

Explanation: 
Swap A[3] and B[3].  Then the sequences are:
A = [1, 3, 5, 7] and B = [1, 2, 3, 4]
which are both strictly increasing.

Note:

  • A, Bare arrays with the same length, and that length will be in the range[1, 1000].

  • A[i], B[i]are integer values in the range[0, 2000].

2. Implementation

(1) DP

思路: 对于数组上的每个位置我们只有两种操作: swap, no swap。所以我们建立一个2二维数组dp, dp[i][0]表示我们不在第i个位置swap, dp[i][1]表示在第i个位置swap

有以下几种情况影响我们的状态转移方程:

1.如果A[i - 1] < A[i] && B[i - 1] < B[i] && A[i - 1] < B[i] && B[i - 1] < A[i], 这个时候我们在第i个位置既可以swap也可以不swap

  1. 如果A[i - 1] < A[i] && B[i - 1] < B[i] && (A[i - 1] > B[i] || B[i - 1] > A[i]), 这个时候我们在第i个位置的操作和第i - 1个位置的操作必须一致

  2. 如果(A[i - 1] > A[i] || B[i - 1] > B[i]) && (A[i - 1] < B[i] && B[i - 1] < A[i]), 这个时候在第i个位置的操作和在第i - 1个位置的操作相反

3. Time & Space Complexity

DP: 时间复杂度O(n), 空间复杂度O(n)

Last updated

Was this helpful?