188 Best Time to Buy and Sell Stock IV

1. Question

Say you have an array for which theithelement is the price of a given stock on dayi.

Design an algorithm to find the maximum profit. You may complete at mostktransactions.

Note: You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

Example 1:

Input: [2,4,1], k = 2

Output: 2

Explanation:
Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2.

Example 2:

Input: [3,2,6,5,0,3], k = 2

Output: 7

Explanation:
Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4.
Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.

2. Implementation

(1) DP

class Solution {
    public int maxProfit(int k, int[] prices) {
        if (prices == null || prices.length == 0) {
            return 0;
        }

        if (k >= prices.length / 2) {
            return maxProfitWithUnlimitedTransactions(prices);
        }

        int[][] dp = new int[k + 1][prices.length];

        for (int i = 1; i <= k; i++) {
            int holding = -prices[0];
            for (int j = 1; j < prices.length; j++) {
                dp[i][j] = Math.max(dp[i][j - 1], holding + prices[j]);
                holding = Math.max(holding, dp[i - 1][j - 1] - prices[j]);
            }
        }
        return dp[k][prices.length - 1];
    }

    public int maxProfitWithUnlimitedTransactions(int[] prices) {
        int curMax = 0;
        int max = 0;

        for (int i = 1; i < prices.length; i++) {
            curMax = prices[i] > prices[i - 1] ?  curMax + prices[i] - prices[i - 1] : curMax;
            max = Math.max(max, curMax);
        }
        return max;
    }
}

3. Time & Space Complexity

DP: 时间复杂度O(nk), 空间复杂度O(nk)

Last updated