756 Pyramid Transition Matrix
1. Question
We are stacking blocks to form a pyramid. Each block has a color which is a one letter string, like `'Z'`.
For every block of color `C` we place not in the bottom row, we are placing it on top of a left block of color `A` and right block of color `B`. We are allowed to place the block there only if `(A, B, C)` is an allowed triple.
We start with a bottom row ofbottom
, represented as a single string. We also start with a list of allowed triplesallowed
. Each allowed triple is represented as a string of length 3.
Return true if we can build the pyramid all the way to the top, otherwise false.
Example 1:
Example 2:
Note:
bottom
will be a string with length in range[2, 8]
.allowed
will have length in range[0, 200]
.Letters in all strings will be chosen from the set
{'A', 'B', 'C', 'D', 'E', 'F', 'G'}
.
2. Implementation
(1) DFS + HashMap
思路:
(1) 根据题意,从bottom level根据allowed的string搭建金字塔,由于上一层里能放的character都要根据下一层的两个character决定,所以我们首先通过HashMap建立allowed string前两个character和最后一个character的映射关系
(2) 第二步就是通过DFS搭建金字塔,递归函数的参数定义分别是curLevel代表当前一层,lastLevel代表上一层,map则是第一步构造的HashMap. 如果当前一层的size为2,上一层的size为1,说明我们已经到塔顶,return true. 如果上一层的size比当前层少1,说明上一层已经搭好,我们要搭上上一层。在搭建上一层的过程中,我们先取到上一层待搭建的位置index,然后根据这个index在当前层中通过hashmap找到可以放置的character,递归实现
3. Time & Space Complexity
时间复杂度O(n^2 + m),n是bottom的长度,从底层到顶层需要的character个数为n + (n - 1) + (n - 2) +... + 1=>O(n^2), m是allowed string的个数,构建hashMap需要O(m)的长度, 空间复杂度O(m + n^2), 递归深度是n^2, hashMap空间复杂度是O(m)
Last updated