465 Optimal Account Balancing

1. Question

A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for Bill's lunch for $10. Then later Chris gave Alice $5 for a taxi ride. We can model each transaction as a tuple (x, y, z) which means person x gave person y $z. Assuming Alice, Bill, and Chris are person 0, 1, and 2 respectively (0, 1, 2 are the person's ID), the transactions can be represented as[[0, 1, 10], [2, 0, 5]].

Given a list of transactions between a group of people, return the minimum number of transactions required to settle the debt.

Note:

  1. A transaction will be given as a tuple (x, y, z). Note thatx ≠ yandz > 0.

  2. Person's IDs may not be linear, e.g. we could have the persons 0, 1, 2 or we could also have the persons 0, 2, 6.

Example 1:

Input: [[0,1,10], [2,0,5]]

Output: 2

Explanation:
Person #0 gave person #1 $10.
Person #2 gave person #0 $5.

Two transactions are needed. One way to settle the debt is person #1 pays person #0 and #2 $5 each.

Example 2:

Input: [[0,1,10], [1,0,1], [1,2,5], [2,0,5]]

Output: 1

Explanation:
Person #0 gave person #1 $10.
Person #1 gave person #0 $1.
Person #1 gave person #2 $5.
Person #2 gave person #0 $5.

Therefore, person #1 only need to give person #0 $4, and all debt is settled.

2. Implementation

(1) Hash Table + Backtracking

思路:

(1)用hashmap预处理transaction,将balance为0的人去除掉

(2)用backtracking对枚举出所有能将剩余debt settle的组合,

class Solution {
    public int minTransfers(int[][] transactions) {
        Map<Integer, Long> map = new HashMap<>();

        // Step 1: Preprocessing the transactions, and ingore people with zero debt
        for (int[] transaction : transactions) {
            int person1 = transaction[0];
            int person2 = transaction[1];
            int curDebt = transaction[2];

            long debt1 = map.getOrDefault(person1, 0L);
            long debt2 = map.getOrDefault(person2, 0L);

            map.put(person1, debt1 - curDebt);
            map.put(person2, debt2 + curDebt);
        }

        List<Long> debts = new ArrayList<>();

        for (long debt : map.values()) {
            if (debt != 0) {
                debts.add(debt);
            }
        }

        // Step 2: Enumerate all possible combinations to settle the debt
        int[] res = {Integer.MAX_VALUE};
        getMinimumTransaction(0, 0, debts, res);
        return res[0];
    }

    public void getMinimumTransaction(int index, int count, List<Long> debts, int[] res) {
        // Skip settled debt
        while (index < debts.size() && debts.get(index) == 0) ++index;

        if (index == debts.size()) {
            res[0] = Math.min(res[0], count);
            return;
        }

        for (int i = index + 1; i < debts.size(); i++) {
            // Only settle debt when the debts[i] has different sign with debts[index]
            if (debts.get(i) * debts.get(index) < 0) {
                debts.set(i, debts.get(i) + debts.get(index));
                getMinimumTransaction(index + 1, count + 1, debts, res);
                debts.set(i, debts.get(i) - debts.get(index));
            }
        }
    }
}

(2) HashMap + Two Pointers + Backtracking

思路: 这里和上面解法唯一的不同的是在第二步里,我们进行进一步的预处理,用two pointers的方法去除掉可以直接match的debt

class Solution {
    public int minTransfers(int[][] transactions) {
        Map<Integer, Long> map = new HashMap<>();

        // Step 1: Preprocessing the transactions, and ingore people with zero debt
        for (int[] transaction : transactions) {
            int person1 = transaction[0];
            int person2 = transaction[1];
            int curDebt = transaction[2];

            long debt1 = map.getOrDefault(person1, 0L);
            long debt2 = map.getOrDefault(person2, 0L);

            map.put(person1, debt1 - curDebt);
            map.put(person2, debt2 + curDebt);
        }

        List<Long> debts = new ArrayList<>();

        for (long debt : map.values()) {
            if (debt != 0) {
                debts.add(debt);
            }
        }

        // Step 2: use two pointers to cancel out debts that match with each other
        Collections.sort(debts);

        int start = 0, end = debts.size() - 1;
        int matchCount = 0;
        while (start < end) {
            if (debts.get(start) + debts.get(end) == 0) {
                debts.remove(start);
                //due to start has been removed: right-1 is correct index
                debts.remove(end - 1);
                // adjust end with end - 2 since two elements have been removed
                end -= 2;
                ++matchCount;
            }
            else if (debts.get(start) + debts.get(end) < 0) {
                ++start;
            }
            else {
                --end;
            }
        }

        // Step 3: Enumerate all possible combinations to settle the debt
        int[] res = {Integer.MAX_VALUE};
        getMinimumTransaction(0, 0, debts, res);
        return matchCount + res[0];
    }

    public void getMinimumTransaction(int index, int count, List<Long> debts, int[] res) {
        // Skip settled debt
        while (index < debts.size() && debts.get(index) == 0) ++index;

        if (index == debts.size()) {
            res[0] = Math.min(res[0], count);
            return;
        }

        for (int i = index + 1; i < debts.size(); i++) {
            // Only settle debt when the debts[i] has different sign with debts[index]
            if (debts.get(i) * debts.get(index) < 0) {
                debts.set(i, debts.get(i) + debts.get(index));
                getMinimumTransaction(index + 1, count + 1, debts, res);
                debts.set(i, debts.get(i) - debts.get(index));
            }
        }
    }
}

3. Time & Space Complexity

(1) Hash Table + Backtracking: 时间复杂度O(n!), n是debt不为0的个数,空间复杂度O(m + n), m是人的个数

(2) HashMap + Two Pointers + Backtracking:时间复杂度O(n!), 空间复杂度O(m + n)

Last updated