391 Perfect Rectangle
391. Perfect Rectangle
1. Question
Given N axis-aligned rectangles where N > 0, determine if they all together form an exact cover of a rectangular region.
Each rectangle is represented as a bottom-left point and a top-right point. For example, a unit square is represented as [1,1,2,2]. (coordinate of bottom-left point is (1, 1) and top-right point is (2, 2)).
Example 1:
rectangles = [
[1,1,3,3],
[3,1,4,2],
[3,2,4,4],
[1,3,2,4],
[2,3,3,4]
]
Return true. All 5 rectangles together form an exact cover of a rectangular region.Example 2:
rectangles = [
[1,1,2,3],
[1,3,2,4],
[3,1,4,2],
[3,2,4,4]
]
Return false. Because there is a gap between the two rectangular regions.Example 3:
Example 4:
2. Implementation
(1) Scan Line + Heap + TreeSet
思路:
1.首先我们定义一个Rectangle的类,其中包含对应的其属于rectangle的所有点的信息,以及这个rectangle的x是一个矩阵的左x还是右x这些信息。将每个点离散化,将左边和右边的x值分别定义一个Rectangle类,放在一个最小堆里
2.第二步,我们用一个TreeSet保存每个rectangle关于y点的信息,按照y值从小到大排序。这里对set的comparator,我们用了小技巧,如果两个rectangle的y interval相交,compare函数会返回0,这样当我们call set.add()的时候,set.add会返回0。
3.最后一步则是按照x的值从小到大的顺序,分别处理其对应矩阵的y interval,判断每个x点对应的y interval是否存在overlap或者gap,如果有则返回false
(2) HashSet
思路: 通过观察,我们发现如果所有矩形可以组成perfect rectangle,那么perfect rectangle的四个顶点必须只出现一次,其他地点出现偶数次,同时perfect rectangle的面积等于所有矩形的面积之和
3. Time & Space Complexity
Scan Line + Heap + TreeSet: 时间复杂度O(nlogn), n是rectangle的个数, 空间复杂度O(n)
HashSet: 时间复杂度O(n), 空间复杂度O(n)
Last updated
Was this helpful?