145 Binary Tree Postorder Traversal
145. Binary Tree Postorder Traversal
1. Question
Given a binary tree, return the postorder traversal of its nodes' values.
For example:
Given binary tree{1,#,2,3}
,
1
\
2
/
3
return[3,2,1]
.
2. Implementation
(1) Morris Tree Traversal
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
if (root == null) {
return res;
}
TreeNode dummy = new TreeNode(0);
dummy.left = root;
TreeNode curNode = dummy, preNode = null;
while (curNode != null) {
if (curNode.left == null) {
curNode = curNode.right;
}
else {
preNode = curNode.left;
while (preNode.right != null && preNode.right != curNode) {
preNode = preNode.right;
}
// Traversing down to the left
if (preNode.right == null) {
preNode.right = curNode;
curNode = curNode.left;
}
// Traversing up from the right
else {
TreeNode node = preNode;
reverse(curNode.left, preNode);
while (node != curNode.left) {
res.add(node.val);
node = node.right;
}
res.add(node.val);
reverse(preNode, curNode.left);
preNode.right = null;
curNode = curNode.right;
}
}
}
return res;
}
public void reverse(TreeNode from, TreeNode to) {
if (from == to) {
return;
}
TreeNode preNode = from, curNode = from.right, nextNode = null;
while (preNode != to) {
nextNode = curNode.right;
curNode.right = preNode;
preNode = curNode;
curNode = nextNode;
}
}
}
(2) Iteration
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
if (root == null) {
return res;
}
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
TreeNode curNode = null, preNode = null;
while (!stack.isEmpty()) {
curNode = stack.peek();
// Case 1: Traverse down the tree, put left child into stack if it exists, otherwise put right child
if (preNode == null || preNode.left == curNode || preNode.right == curNode) {
if (curNode.left != null) {
stack.push(curNode.left);
}
else if (curNode.right != null) {
stack.push(curNode.right);
}
}
// Case 2: Travese up from left child
else if (curNode.left == preNode) {
if (curNode.right != null) {
stack.push(curNode.right);
}
}
// Case 3: Traverse up from right child
else {
res.add(curNode.val);
stack.pop();
}
preNode = curNode;
}
return res;
}
}
3. Time & Space Complexity
(1) Morris Tree Traversal: 时间复杂度: O(n), 空间复杂度: O(1)
(2) Iteration: 时间复杂度: O(n), 空间复杂度: O(h)
Last updated