Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Givennums=[1,3,-1,-3,5,3,6,7], andk= 3.
Therefore, return the max sliding window as[3,3,5,5,6,7].
Note:
You may assumekis always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
Follow up:
Could you solve it in linear time?
2. Implementation
(1) Heap with PriorityQueue
classSolution {publicint[] maxSlidingWindow(int[] nums,int k) {if (nums ==null||nums.length==0) {returnnewint[0]; }int n =nums.length;int[] res =newint[n - k +1];PriorityQueue<Integer> maxHeap =newPriorityQueue<>(Collections.reverseOrder());for (int i =0; i < n; i++) {maxHeap.add(nums[i]);if (i >= k) {maxHeap.remove(nums[i - k]); }if (i - k +1>=0) { res[i - k +1] =maxHeap.peek(); } }return res; }}
(2) Heap with TreeMap
classSolution {publicint[] maxSlidingWindow(int[] nums,int k) {if (nums ==null||nums.length==0) {returnnewint[0]; }int n =nums.length;int[] res =newint[n - k +1];TreeMap<Integer,Integer> map =newTreeMap();for (int i =0; i < n; i++) {map.put(nums[i],map.getOrDefault(nums[i],0) +1);if (i >= k) {map.put(nums[i - k],map.get(nums[i - k]) -1);if (map.get(nums[i - k]) ==0) {map.remove(nums[i - k]); } }if (i - k +1>=0) { res[i - k +1] =map.lastKey(); } }return res; }}
(3) Deque
classSolution {publicint[] maxSlidingWindow(int[] nums,int k) {if (nums ==null||nums.length==0) {returnnewint[0]; }int n =nums.length;int[] res =newint[n - k +1];ArrayDeque<Integer> deque =newArrayDeque();int index =0;for (int i =0; i < n; i++) {// Remove index that is out of slinding window while (!deque.isEmpty() &&deque.peek() < (i - k +1)) {deque.remove(); }// Remove number which is smaller than the current number since they won't be the maxwhile (!deque.isEmpty() && nums[deque.peekLast()] < nums[i]) {deque.removeLast(); }deque.add(i);if (i - k +1>=0) { res[index++] = nums[deque.peek()]; } }return res; }}
3. Time & Space Complexity
Heap with PriorityQueue: 时间复杂度O(n*k),PriorityQueue.remove(Object)要O(k)的时间,而PriorityQueue.remove()需要O(logk)的时间, 空间复杂度O(n)
Heap with TreeMap: 时间复杂度O(nlogk), 空间复杂度(n) TreeMap需要O(k)空间, res需要n - k + 1空间,加起来要O(n)