526 Beautiful Arrangement
1. Question
Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 <= i <= N) in this array:
The number at the ith position is divisible by i.
i is divisible by the number at the ith position.
Now given N, how many beautiful arrangements can you construct?
Example 1:
Input: 2
Output: 2
Explanation:
The first beautiful arrangement is [1, 2]:
Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).
Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).
The second beautiful arrangement is [2, 1]:
Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).
Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.Note:
N is a positive integer and will not exceed 15.
2. Implementation
(1) Backtracking
3. Time & Space Complexity
Backtracking: 时间复杂度O(N!), 空间复杂度O(N)
Last updated
Was this helpful?