Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7]
Output: 2
Explanation:
The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2]
Output: 5
Explanation:
The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
Note:Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.
2. Implementation
(1) DP
classSolution {publicintfindNumberOfLIS(int[] nums) {if (nums ==null||nums.length==0) {return0; }int n =nums.length;// len[i] is the length of longest subsequence that end with nums[i]int[] len =newint[n];// count[i] is the number of longest subsequence that end with nums[i]int[] count =newint[n];Arrays.fill(len,1);Arrays.fill(count,1);for (int i =1; i < n; i++) {for (int j =0; j < i; j++) {if (nums[j] < nums[i]) {if (len[j] +1== len[i]) { count[i] += count[j]; }elseif (len[j] +1> len[i]) { len[i] = len[j] +1; count[i] = count[j]; } } } }int maxLen =1;for (int l : len) { maxLen =Math.max(maxLen, l); }int res =0;for (int i =0; i < n; i++) {if (maxLen == len[i]) { res += count[i]; } }return res; }}