207 Course Schedule
207. Course Schedule
1. Question
There are a total ofncourses you have to take, labeled from0
ton - 1
.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair:[0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Note:
The input prerequisites is a graph represented by a list of edges , not adjacency matrices.
You may assume that there are no duplicate edges in the input prerequisites.
2. Implementation
(1) BFS
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
List<Set<Integer>> adjList = new ArrayList<>();
for (int i = 0; i < numCourses; i++) {
adjList.add(new HashSet<>());
}
int[] inDegree = new int[numCourses];
for (int[] prerequisite : prerequisites) {
adjList.get(prerequisite[0]).add(prerequisite[1]);
++inDegree[prerequisite[1]];
}
Queue<Integer> queue = new LinkedList<>();
for (int i = 0; i < numCourses; i++) {
if (inDegree[i] == 0) {
queue.add(i);
}
}
int count = 0;
while (!queue.isEmpty()) {
int course = queue.remove();
++count;
for (int nextCourse : adjList.get(course)) {
if (--inDegree[nextCourse] == 0) {
queue.add(nextCourse);
}
}
}
return count == numCourses;
}
}
(2) DFS
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
int n = numCourses;
List<Set<Integer>> adjList = new ArrayList<>();
for (int i = 0; i < n; i++) {
adjList.add(new HashSet<>());
}
for (int[] prerequisite : prerequisites) {
adjList.get(prerequisite[1]).add(prerequisite[0]);
}
boolean[] visited = new boolean[n];
boolean[] onStack = new boolean[n];
for (int i = 0; i < n; i++) {
if (!visited[i]) {
if (!dfs(i, visited, onStack, adjList)) {
return false;
}
}
}
return true;
}
public boolean dfs(int course, boolean[] visited, boolean[] onStack, List<Set<Integer>> adjList) {
if (visited[course]) {
return true;
}
if (onStack[course]) {
return false;
}
onStack[course] = true;
for (int nextCourse : adjList.get(course)) {
if (!dfs(nextCourse, visited, onStack, adjList)) {
return false;
}
}
visited[course] = true;
onStack[course] = false;
return true;
}
}
3. Time & Space Complexity
BFS: 时间复杂度O(n),空间复杂度O(n)
DFS: 时间复杂度O(n),空间复杂度O(n)
Last updated
Was this helpful?