312 Burst Balloons
312. Burst Balloons
1. Question
Givenn
balloons, indexed from0
ton-1
. Each balloon is painted with a number on it represented by arraynums
. You are asked to burst all the balloons. If the you burst ballooni
you will getnums[left] * nums[i] * nums[right]
coins. Hereleft
andright
are adjacent indices ofi
. After the burst, theleft
andright
then becomes adjacent.
Find the maximum coins you can collect by bursting the balloons wisely.
Note:
(1) You may imaginenums[-1] = nums[n] = 1
. They are not real therefore you can not burst them.
(2) 0 ≤n
≤ 500, 0 ≤nums[i]
≤ 100
Example:
Given[3, 1, 5, 8]
Return167
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] -->[]
coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
2. Implementation
(1) DP
思路: 这题其实和Matrix Chain Multiplication一模一样,只是换方法表述而已,还是区间DP的思想。dp[i][j]表示在区间[i, j]我们可以获得的最大分数。根据题意,我们知道每爆一个气球nums[i],我们可以获得nums[left] * nums[i] * nums[right]的分数,那么在[i, j]区间里,我们可以找到一个点k使得 nums[i - 1] * nums[k] * nums[j + 1] + dp[i][k - 1] + dp[k + 1][j]最大,于是状态转移方程为
dp[i][j] = Math.max(dp[i][j], dp[i][k - 1] + dp[k + 1][j] + nums[i - 1] * nums[k] * nums[j + 1]
class Solution {
public int maxCoins(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
int n = nums.length;
// Add 2 because we wanna include the boundary nums[-1] and nums[n]
int[] coins = new int[n + 2];
coins[0] = 1;
coins[n + 1] = 1;
for (int i = 1; i <= n; i++) {
coins[i] = nums[i - 1];
}
// 我们要找的答案在dp[1][n]
// dp[i][j] means the max coins we can collect in the coin(i..j)
int[][] dp = new int[n + 2][n + 2];
for (int len = 1; len <= n; len++) {
for (int start = 1; start <= n - len + 1; start++) {
int end = start + len - 1;
for (int mid = start; mid <= end; mid++) {
dp[start][end] = Math.max(dp[start][end], dp[start][mid - 1] + dp[mid + 1][end] + coins[start - 1] * coins[mid] * coins[end + 1]);
}
}
}
return dp[1][n];
}
}
3. Time & Space Complexity
DP: 时间复杂度O(n^3), 空间复杂度O(n^2)
Last updated
Was this helpful?